Interventional Oncology
介入肿瘤学
基本信息
- 批准号:10920176
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAblationAccelerationAddressAnimalsAnnual ReportsAntigen PresentationArtificial IntelligenceAtmosphereAugmented RealityAutomationAwardBasic ScienceBiological MarkersBiomedical EngineeringBiopsyCCRCOVID-19Cancer PatientCathetersCellular PhoneClinicClinicalClinical ProtocolsClinical ResearchClinical TrialsClipCollaborationsCommunitiesComputer softwareComputersDataData ScienceData ScientistDatabasesDetectionDevelopmentDevicesDiagnosisDisciplineDiseaseDoctor of PhilosophyDoseDown-RegulationDrug CombinationsDrug Delivery SystemsDrug ModelingsDrug TargetingEcosystemEducationElectroporationEmerging TechnologiesEnergy-Generating ResourcesEngineeringEnvironmentExposure toFacultyFluoroscopyFocused Ultrasound TherapyFreezingGoalsGogglesHarvestHepatitisHumanImageImage Guided BiopsyImaging DeviceImaging technologyImmuneImmune checkpoint inhibitorInfusion proceduresInterventionInterventional radiologyIntramural Research ProgramInvestigationKidneyLasersLightLiposomesLiverLocal TherapyLocalized Malignant NeoplasmLocationMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of liverMalignant neoplasm of prostateMalignant neoplasm of urinary bladderMechanicsMedicalMedical OncologyMedicineMentorsMethodsMicrospheresModelingMolecularMolecular TargetMultimodal ImagingMusNational Institute of Biomedical Imaging and BioengineeringNeedle biopsy procedureNeedlesOncologistOncologyOperative Surgical ProceduresOrganPaintPathologyPathway interactionsPatient CarePatientsPharmaceutical PreparationsPhysiciansPopulationPositron-Emission TomographyProceduresProstateProtocols documentationPublicationsRadiationRadiation OncologyRadiology SpecialtyRectumReportingResearchResearch PersonnelResourcesRoboticsSalineScienceScientistScreening for cancerSignal TransductionStandardizationStructure of base of prostateStudentsSurgical OncologySystemTechniquesTechnologyTestingTherapeutic EmbolizationThermal Ablation TherapyThinnessTimeTrainingTraining and EducationTranslatingTranslational ResearchUnited States National Institutes of HealthUrologic OncologyVentilatorVisionVisitVisualizationVoiceWoodchuckX-Ray Computed Tomographyautomated segmentationbench to bedsidecancer classificationcancer clinical trialcancer therapycheckpoint inhibitionchemotherapyclinical centercollaborative environmentcombination cancer therapycommercializationcone-beam computed tomographycostcost effectivedeep learningdeep learning modeldigital pathologydrug discoveryeducation pathwayfirst-in-humanimage guidedimage guided therapyimage processingimage-guided drug deliveryimaging modalityimaging scientistimaging systemimmune modulating agentsimmune resistanceimmunoregulationin vivoinnovationmass casualtymicrowave electromagnetic radiationminimally invasivemultidisciplinarymultimodalitynanoparticlenanoscalenew technologynovelpost-COVID-19pre-clinicalprecision drugsprognosticationprogramsprostate biopsyradio frequencyradiologistrectalsmall moleculesoftware developmentsoundtargeted treatmenttechnology/techniquetooltranslational modeltreatment planningtrial planningtumortumor ablationultrasoundurologicvector
项目摘要
The Center for lnterventional Oncology (CIO) was established at the NIH Clinical Center (CC) to develop and translate image-guided multi modality multidisciplinary technologies for localized cancer treatments. The Center is a collaboration involving CC and NCI. The Center draws on the strengths of each partner to investigate how imaging technologies and devices can diagnose and treat localized cancers in ways that are precisely targeted and minimally or non-invasive. In doing so, CIO bridges the gap between diagnosis and therapy, and between emerging technologies and procedural medicine. Advanced imaging methods detect cancers earlier when often localized to a single organ or region, such as the liver or prostate. lnterventional oncology often provides cancer patients with local or regional treatment options to augment the standard systemic or organ-based cancer therapies. CIO investigators leverage the interdisciplinary, translational environment at the CC to investigate and optimize how and when to combine drugs, devices, and multimodal imaging navigation. For example, "activatable" drugs can be injected in a vessel inside a nanoscale or micron-scale vector or bubble, then deployed directly in the tumor with needles, catheters, or ultrasound using "fusion imaging", "augmented reality", or AI-"deep learning", to enable the physician to navigate through the body in a more standardized fashion, with real-time visualization using advanced imaging technologies, such as magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), cone beam CT (CBCT), or ultrasound. Pre procedural images are fused to guide devices delivering targeted therapy to the location of the disease, making the procedure more cost effective because it doesn't require the imaging system to be physically present to take advantage of the prior imaging information. A prior prostate MRI, for example, can be used to help with guided biopsy or focal ablation in an office setting, by using a "medical GPS"-enabled ultrasound, without requiring, occupying or tying up an MRI system during the procedure. In another example, a thin needle or light, sound, or electrical waves can be used to ablate tumors and enhance targeted drug delivery or immunomodulate by enhanced antigen presentation or downregulation of immunosuppressive factors. Energy sources include high-intensity focused ultrasound, freezing, microwaves, laser, histotripsy, electroporation, and radiofrequency. Investigations look into image-guided drug delivery or image guided "drug painting," where the image can be used to prescribe a particular drug to a specific region, by combining targeted, image-able able or activate-able drugs with localized energy or heat to deploy the drug within specially engineered micro- or nano-particles. The Center provides a forum to encourage collaborations among researchers and patient-care experts in medical, surgical, urologic, and radiation oncology and interventional radiology / molecular interventions. The IRP provides an exceptional environment for this type of collaborative translational research. Other major program components include the development of new image-guided biopsy for personalized drug discovery) and first-in-human investigations involving new micro- or nano-scale drugs and carriers, devices, image-guided robotics or augmented reality devices for enhanced automation and standardization of procedures. Targeted sequential biopsy is a powerful tool for drug discovery or biomarker characterization across time and space coordinates. Education and cross-training is another important part of the program. Significant gaps exist between the various disciplines, between research efforts and patient care, and between diagnosis and treatment. The gaps may be integrated through advanced image methods for localized therapy. CIO trainees are exposed to a wide variety of interdisciplinary thought, which underlines the unique translational atmosphere at the NIH, where bench-to-bedside is the rule. Specific aims include: 1. Develop training and educational pathways not otherwise available in Interventional Oncology 2. Develop novel image-guided methods for smart biopsy and biomarker procurement to support targeted therapeutics 3. Support patient care using novel minimally invasive Interventional Oncology techniques, especially in the liver, kidney and prostate 4. Develop novel techniques and technologies in Interventional Oncology. This program uniquely provides an interdisciplinary environment that combines training, patient care, and translational research to accelerate progress in interventional oncology and molecular-targeted interventions. The focus is upon translational models, translational tools, practical deliverables and multidisciplinary paradigms that address unmet clinical needs. Artificial intelligence / deep learning in cancer were begun to define pathways and toolkits to promote integration of digital pathology, with molecular and imaging information for specific cancers and interventions. CIO manages - 10 preclinical protocols and - 5 clinical protocols. CIO staff were awarded advanced degrees and staff have mentored over 200 trainees (students, residents, fellows, PhD candidates, junior faculty, visiting scientists, engineers, and collaborating scientists). The Woodchuck HCC model was established and characterized for IR and immunomodulatory agents. Different ablation energies were compared in terms of immune effects and immune resistance. Novel software and hardware were developed for patients. Augmented reality for smartphones and goggles was compared to standard guidance systems for IR clinic, and was used for ablation treatment planning. CIO helped define the founding vision of the NCI Al Resource, as a toolkit for deep learning tasks within CCR and the data science ecosystem for cancer. Fusion guided ablation was developed and deployed for the office setting, as was rectum-free prostate biopsy with needle and ultrasound totally outside of the rectum. Smartphone interventions were brought to clinic. CIO accomplished the 1st in human use of artificial intelligence and deep learning for semi-automated segmentation and registration during thermal ablation procedures, Transperineal hand-held ultrasound fusion biopsy without a frame or stepper stage was tested in practice. In the translational animal lab, CIO characterized molecular immune correlates for woodchuck hepatitis-induced HCC, developed a drug delivery model for drug dose painting with fusion and image-able drug eluting beads, developed and deployed immuno-beads that elute immunomodulatory agents (TLR-7 and small molecule checkpoint inhibitors) after local catheter-based delivery into woodchucks with HCC, characterized preclinical augmentation of check point inhibition with cryo in woodchuck liver cancer and cryo and RFA in mouse tumors in vivo. Multiple devices were developed including "Angle-Nav" MEMS clip to needle, Airwaze, BronchoMEMS, OncoNav, PercuNav, UroNav, Lumi and CystoNav image stitching. Augmented reality via smartphone was validated. The CIO team also continued to harvest from the multi-national partnerships with > 15 publications on COVID-19, the largest public posting of COVID-19 CTs in the 1st year, and helped translate and commercialize a 3D-printed miniature ventilator and an isolation device for mass casualty and in-field transport purposes. A deep learning model was trained for detection of illness like Omicron with voice signal alone, and a voice App was deployed on smartphones for disease detection. Bladder cancer clinical trials are planned studying heat-deployed liposomal chemotherapy and hot saline infusions. HIFU clinical trials are starting for prostate cancer. Artificial intelligence tools for image guided therapy were deployed.
介入肿瘤学中心 (CIO) 成立于 NIH 临床中心 (CC),旨在开发和转化用于局部癌症治疗的图像引导多模态多学科技术。该中心是 CC 和 NCI 的合作项目。该中心利用每个合作伙伴的优势,研究成像技术和设备如何以精确靶向、微创或无创的方式诊断和治疗局部癌症。通过这样做,首席信息官弥合了诊断和治疗之间以及新兴技术和程序医学之间的差距。当癌症通常局限于单个器官或区域(例如肝脏或前列腺)时,先进的成像方法可以更早地发现癌症。介入肿瘤学通常为癌症患者提供局部或区域治疗选择,以增强标准的全身或基于器官的癌症治疗。 CIO 研究人员利用 CC 的跨学科、转化环境来调查和优化如何以及何时结合药物、设备和多模态成像导航。例如,“可激活”药物可以注射到纳米级或微米级载体或气泡内的血管中,然后使用“融合成像”、“增强现实”或人工智能,通过针、导管或超声波直接部署在肿瘤中-“深度学习”,使医生能够以更标准化的方式在身体中导航,并使用先进的成像技术(例如磁共振成像(MRI)、正电子发射断层扫描(PET)、计算机断层扫描)进行实时可视化(CT)、锥形束 CT (CBCT) 或超声波。融合手术前图像以引导设备向疾病部位提供靶向治疗,从而使手术更具成本效益,因为它不需要成像系统实际存在来利用先前的成像信息。例如,之前的前列腺 MRI 可用于在办公室环境中通过使用“医用 GPS”超声波来帮助进行引导活检或局部消融,而无需在手术过程中占用或束缚 MRI 系统。在另一个例子中,细针或光、声或电波可用于消融肿瘤并增强靶向药物递送或通过增强抗原呈递或下调免疫抑制因子来进行免疫调节。能源包括高强度聚焦超声、冷冻、微波、激光、组织解剖、电穿孔和射频。研究着眼于图像引导的药物输送或图像引导的“药物绘画”,其中图像可用于通过将靶向的、可成像或可激活的药物与局部能量或热量相结合来向特定区域开出特定药物。将药物部署在专门设计的微米或纳米颗粒中。该中心提供了一个论坛,鼓励研究人员和患者护理专家在医学、外科、泌尿外科、放射肿瘤学以及介入放射学/分子干预方面进行合作。 IRP 为此类合作转化研究提供了一个特殊的环境。其他主要项目组成部分包括开发用于个性化药物发现的新型图像引导活检以及涉及新型微米或纳米级药物和载体、设备、图像引导机器人或用于增强自动化的增强现实设备的首次人体研究和程序标准化。靶向序贯活检是跨越时间和空间坐标的药物发现或生物标志物表征的强大工具。教育和交叉培训是该计划的另一个重要部分。不同学科之间、研究工作和患者护理之间以及诊断和治疗之间存在着巨大差距。这些间隙可以通过先进的图像方法进行整合以进行局部治疗。 CIO 培训生接触到各种各样的跨学科思想,这凸显了 NIH 独特的翻译氛围,从实验室到临床都是规则。具体目标包括: 1. 开发介入肿瘤学中没有的培训和教育途径 2. 开发用于智能活检和生物标志物采购的新型图像引导方法,以支持靶向治疗 3. 使用新型微创介入肿瘤学技术支持患者护理,特别是在肝脏、肾脏和前列腺 4. 开发介入肿瘤学新技术。该项目独特地提供了一个结合培训、患者护理和转化研究的跨学科环境,以加速介入肿瘤学和分子靶向干预措施的进展。重点是解决未满足的临床需求的转化模型、转化工具、实用成果和多学科范式。癌症领域的人工智能/深度学习开始定义途径和工具包,以促进数字病理学与特定癌症和干预措施的分子和成像信息的整合。 CIO 管理 - 10 个临床前方案和 - 5 个临床方案。 CIO 员工获得了高级学位,员工指导了 200 多名学员(学生、住院医师、研究员、博士生、初级教师、访问科学家、工程师和合作科学家)。建立了土拨鼠 HCC 模型并针对 IR 和免疫调节剂进行了表征。比较不同消融能量的免疫效果和免疫抵抗力。为患者开发了新颖的软件和硬件。将智能手机和护目镜的增强现实与 IR 诊所的标准指导系统进行比较,并用于消融治疗计划。 CIO 帮助定义了 NCI Al Resource 的创始愿景,将其作为 CCR 和癌症数据科学生态系统中深度学习任务的工具包。融合引导消融术是为办公室环境开发和部署的,还有完全在直肠外进行针和超声的直肠前列腺活检。智能手机干预被带到诊所。 CIO 实现了人类在热消融过程中使用人工智能和深度学习进行半自动分割和配准的第一,在实践中测试了没有框架或步进台的经会阴手持式超声融合活检。在转化动物实验室中,CIO 表征了土拨鼠肝炎诱发的 HCC 的分子免疫相关性,开发了一种药物递送模型,用于使用融合和可成像药物洗脱珠进行药物剂量绘制,开发并部署了可洗脱免疫调节剂 (TLR- 7 和小分子检查点抑制剂)在局部导管递送至患有 HCC 的土拨鼠体内后,在土拨鼠肝癌中采用冷冻增强检查点抑制作用,在土拨鼠肝癌中采用冷冻和 RFA 增强检查点抑制作用。小鼠体内肿瘤。开发了多种设备,包括“Angle-Nav”MEMS 夹针、Airwaze、BronchoMEMS、OncoNav、PercuNav、UroNav、Lumi 和 CystoNav 图像拼接。通过智能手机的增强现实得到了验证。 CIO 团队还继续从与超过 15 种关于 COVID-19 的出版物的跨国合作中获益,这是第一年最大的 COVID-19 CT 公开发布,并帮助翻译和商业化 3D 打印微型呼吸机和隔离器用于大规模伤亡和现场运输目的的设备。训练深度学习模型用于仅使用语音信号检测 Omicron 等疾病,并在智能手机上部署语音应用程序以进行疾病检测。计划进行膀胱癌临床试验,研究热部署脂质体化疗和热盐水输注。针对前列腺癌的 HIFU 临床试验已经开始。部署了用于图像引导治疗的人工智能工具。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clinical perineural invasion of the trigeminal and facial nerves in cutaneous head and neck squamous cell carcinoma: Outcomes and prognostic implications of multimodality and salvage treatment.
皮肤头颈部鳞状细胞癌三叉神经和面神经的临床神经周围侵犯:多模式和挽救治疗的结果和预后影响。
- DOI:
- 发表时间:2017-07
- 期刊:
- 影响因子:0
- 作者:Erkan, Serkan;Savundra, James M;Wood, Bradley;Acharya, Aanand N;Rajan, Gunesh P
- 通讯作者:Rajan, Gunesh P
Is prostatic adenocarcinoma with cribriform architecture more difficult to detect on prostate MRI?
具有筛状结构的前列腺腺癌在前列腺 MRI 上更难检测吗?
- DOI:
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Belue, Mason J;Blake, Zoë;Yilmaz, Enis C;Lin, Yue;Harmon, Stephanie A;Nemirovsky, Daniel R;Enders, Jacob J;Kenigsberg, Alexander P;Mendhiratta, Neil;Rothberg, Michael;Toubaji, Antoun;Merino, Maria J;Gurram, Sandeep;Wood, Bradford J;Choyke, P
- 通讯作者:Choyke, P
Electrically conductive catheter inhibits bacterial colonization.
导电导管抑制细菌定植。
- DOI:
- 发表时间:2014-05
- 期刊:
- 影响因子:0
- 作者:Amalou, Hayet;Negussie, Ayele H;Ranjan, Ashish;Chow, Lucy;Xu, Sheng;Kroeger, Craig;Neeman, Ziv;O'Grady, Naomi P;Wood, Bradford J
- 通讯作者:Wood, Bradford J
Comparison of MRI-Based Staging and Pathologic Staging for Predicting Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy.
基于 MRI 的分期和病理分期预测根治性前列腺切除术后前列腺癌生化复发的比较。
- DOI:
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Merriman, Katie M;Harmon, Stephanie A;Belue, Mason J;Yilmaz, Enis C;Blake, Zoë;Lay, Nathan S;Phelps, Tim E;Merino, Maria J;Parnes, Howard L;Law, Yan Mee;Gurram, Sandeep;Wood, Bradford J;Choyke, Peter L;Pinto, Peter A;Turkbey, Baris
- 通讯作者:Turkbey, Baris
Bench-to-clinic development of imageable drug-eluting embolization beads: finding the balance.
可成像药物洗脱栓塞珠的从实验室到临床的开发:找到平衡。
- DOI:
- 发表时间:2018-11
- 期刊:
- 影响因子:0
- 作者:Lewis, Andrew L;Willis, Sean L;Dreher, Matthew R;Tang, Yiqing;Ashrafi, Koorosh;Wood, Bradford J;Levy, Elliot B;Sharma, Karun V;Negussie, Ayele H;Mikhail, Andrew S
- 通讯作者:Mikhail, Andrew S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradford Wood其他文献
Bradford Wood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradford Wood', 18)}}的其他基金
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
- 批准号:
8565354 - 财政年份:
- 资助金额:
-- - 项目类别:
Image Guided Focused Ultrasound For Drug Delivery and Tissue Ablation
用于药物输送和组织消融的图像引导聚焦超声
- 批准号:
8952856 - 财政年份:
- 资助金额:
-- - 项目类别:
Bench to Bedside: Non-invasive Treatment of Tumors in Children
从实验室到临床:儿童肿瘤的无创治疗
- 批准号:
10691781 - 财政年份:
- 资助金额:
-- - 项目类别:
Image Guided Focused Ultrasound For Drug Delivery and Tissue Ablation
用于药物输送和组织消融的图像引导聚焦超声
- 批准号:
10022064 - 财政年份:
- 资助金额:
-- - 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
- 批准号:
10022063 - 财政年份:
- 资助金额:
-- - 项目类别:
Navigation Tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
- 批准号:
10920174 - 财政年份:
- 资助金额:
-- - 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
- 批准号:
7733647 - 财政年份:
- 资助金额:
-- - 项目类别:
Core Research Services for Molecular Imaging and Imaging Sciences
分子成像和成像科学的核心研究服务
- 批准号:
7733649 - 财政年份:
- 资助金额:
-- - 项目类别:
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
- 批准号:22378174
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Design of the Glomerulus and bOwman cApsuLe on a chip (GOAL)
芯片上肾小球和鲍曼胶囊的设计(目标)
- 批准号:
10810038 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Magnetic Bronchoscope for Improved Pulmonary Access
用于改善肺部通路的磁力支气管镜
- 批准号:
10152980 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Smart Needle with Intelligent Robotic Control for Prostate Brachytherapy
用于前列腺近距离治疗的智能机器人控制智能针
- 批准号:
10627946 - 财政年份:2021
- 资助金额:
-- - 项目类别: