Navigation Tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
基本信息
- 批准号:10920174
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AblationAddressAdoptedAdoptionAnatomyAngioplastyAnnual ReportsAntineoplastic AgentsAortaAreaArtificial IntelligenceAtherosclerosisAugmented RealityAutomationBedsBiological MarkersBiopsyBrain AneurysmsBronchoscopyCaringCathetersCellular PhoneChemoembolizationClinicClinicalClinical ResearchClinical TreatmentClinical TrialsClipComputer softwareDataDevelopmentDevice or Instrument DevelopmentDevicesDiagnosisDiseaseDoseDrug CombinationsDrug Delivery SystemsDrug TargetingElectromagneticsEndoscopesEndoscopyEngineeringEquipmentFeedbackFluoroscopyFocused Ultrasound TherapyFutureGoalsGrantHeterogeneityImageImaging DeviceImmunotherapyIn VitroIntelligenceInterventionInterventional radiologyIntramural Research ProgramLasersLegal patentLiposomesLiverLocalized DiseaseMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateMarketingMedicalMedical DeviceMedicineMetabolicMethodsMiniaturizationMissionModalityModelingMonitorMorphologyMultimodal ImagingNeedlesNormal tissue morphologyOncologyOperating RoomsOperative Surgical ProceduresOpticsPaperPatientsPharmaceutical PreparationsPharmacologic SubstancePhasePositioning AttributePositron-Emission TomographyPre-Clinical ModelPrivatizationProceduresProcessPropertyProstateProstate AblationRadiofrequency Interstitial AblationRadiology SpecialtyRectumResearchResolutionResourcesRoboticsRouteScienceSiteSolid NeoplasmStandardizationStentsSystemSystemic diseaseTechniquesTechnologyTemperatureTestingTherapeuticTherapeutic AgentsTherapeutic EmbolizationTherapeutic InterventionThermal Ablation TherapyTimeTissuesToxic effectTraining ProgramsTranslatingTranslational ResearchUnited States National Institutes of HealthUrethraUterine FibroidsVendorVisionVisualizationWorkanti-cancer therapeuticanticancer researchanticancer treatmentartery occlusionbench to bedsidecancer therapycheckpoint therapyclinical centerclinically relevantcommercializationcone-beam computed tomographycost effectivecost effectivenessdesigndrug discoveryempowermentexperiencefallsfirst-in-humanimage guidedimage guided interventionimage guided therapyimage processingimaging modalityimmune activationimprovedimproved outcomein vivoinstrumentationmicrowave electromagnetic radiationminimally invasivemolecular targeted therapiesmulti-component interventionmultidisciplinarymultimodalitynovelnovel therapeuticspersonalized therapeuticpharmacologicprecision drugsprogramsprostate biopsyprototyperadio frequencyrectalside effectsmartphone applicationtargeted treatmenttemporal measurementtooltool developmenttranslational potentialtreatment planningtumortumor ablationtumor heterogeneityultrasoundvalidation studies
项目摘要
Research in Interventional Radiology (IR) navigations lab (within CIO) is motivated by image guidance and minimally invasive approaches which have revolutionized management of common diseases like cancer. However, diagnosis and therapy remain separated from each other in time and space. This gap between diagnosis and therapy can be narrowed by minimally invasive image guided therapies and with the application of novel navigation tools and guidance technologies. All research efforts in the IR lab in CIO are developed with a clear translational route to the clinic and address areas of urgent clinical need.
The IR lab CIO navigation research program is separated into three main areas: 1. electromagnetic (EM) and optical tracking and robotics, 2. drug + device combinations, 3. novel methods or devices to improve or augment ablative energy delivery (RFA, MWA, Laser, IRE, PEF, Cryo or HIFU). The diversity of these projects requires an interdisciplinary team and takes full advantage of the interdisciplinary resources found within the Clinical Center and the Intramural Research Program. Combining imaging tools, with pharmaceuticals and medical devices can make a significant contribution to the future treatment of localized and systemic diseases, such as cancer.
Principal projects are: 1) Smart research biopsy, 2) OR of the future 3) Drugs + devices. Smart biopsy relies upon precise electromagnetic or gyroscopic tracking to target tissue to correlate tissue with imaging parameters from multiple sites for tumor heterogeneity. OR of the future is a broad translational project that integrates technologies for navigation, automation, and visualization of medical procedures.
Sub-projects within the Drug + Device model include: 1) Temperature sensitive liposomes combined with radiofrequency ablation (RFA) or high intensity focused ultrasound (HIFU), 2) Thermal ablation or TACE combined with immunotherapy / checkpoint inhibitor therapy, and 3) Image-able drug eluting beads (DEB) for trans-catheter arterial chemoembolization (TACE). The clinical treatment of solid tumors could be improved by controlling the pharmacologic properties of anticancer therapeutics to deliver a greater dose to the tumor; with conventional drugs, this dose is typically limited by toxic systemic side effects in normal tissues. Therefore, the efficacy of current anticancer treatments may be improved with advances in drug delivery technologies and paradigms, augmented or delivered via needle, catheter or energy (RFA or HIFU). The goal of drug delivery in the treatment of cancer is to increase the concentration of a therapeutic agent in the tumor while limiting systemic exposure and resulting normal tissue toxicity. The combination of drug delivery technologies with image guided interventions represents a rich field with great translational potential and the ability to bridge the gap between diagnosis and therapy.
Diagnosis and therapy remain distinctly separated from each other in time and space. The gap between diagnosis and therapy can be closed by minimally invasive image guided therapies. Real-time, intra-procedural tools blend diagnosis and therapy into a dynamic, iterative process with improved outcomes. The minimization of surgical-like procedures is fueled by multi-modality imaging, navigation, visualization, robotics, and automated precision tools. These enabling technologies have not yet been fully applied to existing clinical problems, especially in minimally-invasive image guided therapies. This presents an opportunity to integrate these technologies into a clinical setting in a validated and cost-effective manner, and to study the impact prior to broader implementation.
Image guidance and multimodality navigation has fueled a small revolution in procedural medicine, which presents unprecedented opportunity and challenge. Image guidance and minimally invasive approaches have revolutionized the management of many common diseases. The miniaturization of surgical interventions has seen the broad adoption of needle or catheter-based procedures such as tumor embolization, brain aneurysm coiling, aortic stent grafting, uterine fibroid embolization, atherosclerosis stenting and angioplasty, and cancer thermal ablation or immune activation with radiofrequency or other energies. As procedures are becoming less and less invasive, they are more and more targeted and guided by imaging and spatial information. The ability to navigate a medical device to a target, based upon multiple windows or multiple modalities, has advantages. The combination of functional and morphologic (metabolic and anatomic) information on the same cartesian XYZ coordinate system is empowering, to address questions such as how and where to apply AI models for IR cancer procedures (like biopsy) to decipher the temporal and spatial heterogeneities inherent to cancers (& the correlative biomarkers).
With academic & private partners, a multimodality interventional radiology suite was developed that uses a CT coordinate frame to co-register and co-localize different devices including pre-procedural images, intra-procedural ultrasound, CT, rotational fluoroscopy, endoscopy, robotics, electromagnetic tracking and therapeutic ultrasound, microwave, radiofrequency, etc. to customize and characterize combinations of techniques and guidance methods personalized for each patient. Combining imaging modalities takes advantage of each modality's strengths. Real-time feedback and temporal resolution of ultrasound is combined with the functional and metabolic data from PET and the spatial resolution of MR or CT, all on one seamless platform for treatment planning, targeting, procedural navigation, monitoring, and verification of treatment. The electromagnetic tracking clinical trial has thousands of patients longitudinally. Study of smart systems for tumor ablation and treatment planning and for prostate biopsies uses information, without requiring the imaging equipment (like MRI) to be physically present.
Novel uses of smartphone applications for needle positioning have been deployed with cost effectiveness. Smartphone guidance has been added to a clinical trial and an augmented reality platform should be placed into clinical use.
This work yielded numerous discoveries, papers, and commercialized products. Also as a result of this work, numerous vendors in the field have adopted similar multi-modality approaches. Early Phase of laser ablation of prostate cancer under MRI guidance was completed and Phase II-III work began fall 2017 and has continued since for using ultrasound alone to guide prostate cancer focal ablation. Low tech, cost-effective methods for navigation include needle based biopsy and ablation, and bronchoscopy navigation without expensive equipment. Focal prostate therapies via transurethral and transperineal access and transperineal ultrasound moved the whole system out of the rectum. Composite treatment planning was refined with several derivative clinical softwares available. Drug eluting immuno-beads as a tool for regional therapies were formulated and deployed in preclinical models for liver chemoembolization. Image-able drug eluting beads are being studied and refined in preclinical models and clinic, in order to develop drug dose planning software. Conductive catheters and endovascular devices for rapid artery occlusion were studied and prototyped, and NIH patents were issued on devices. Optical and EM tracking needle endoscopy for biopsy was deployed in clinic under a UO1 grant and a clinical trial. Refinements are iterative and uniquely attainable within the one-of-a-kind "idea-to-bench-to-bedside-to market" multi-modality translational milieu of the NIH Intramural Research Program.
介入放射学 (IR) 导航实验室(CIO 内部)的研究受到图像引导和微创方法的推动,这些方法彻底改变了癌症等常见疾病的管理。然而,诊断和治疗在时间和空间上仍然是分离的。诊断和治疗之间的差距可以通过微创图像引导治疗以及新型导航工具和引导技术的应用来缩小。 CIO IR 实验室的所有研究工作都是通过明确的临床转化途径开发的,并解决紧急临床需求领域。
IR 实验室 CIO 导航研究项目分为三个主要领域:1. 电磁 (EM) 和光学跟踪和机器人技术,2. 药物 + 设备组合,3. 改善或增强消融能量输送的新方法或设备(RFA、MWA) 、激光、IRE、PEF、冷冻或 HIFU)。 这些项目的多样性需要一个跨学科团队,并充分利用临床中心和校内研究项目内的跨学科资源。将成像工具与药物和医疗设备相结合可以为未来局部和全身疾病(例如癌症)的治疗做出重大贡献。
主要项目有:1) 智能研究活检,2) 未来的手术室,3) 药物+设备。智能活检依赖于对目标组织的精确电磁或陀螺仪跟踪,将组织与来自多个部位的肿瘤异质性的成像参数相关联。未来的 OR 是一个广泛的转化项目,集成了医疗程序的导航、自动化和可视化技术。
药物+器械模型的子项目包括:1)温度敏感脂质体结合射频消融(RFA)或高强度聚焦超声(HIFU),2)热消融或TACE结合免疫疗法/检查点抑制剂疗法,以及3)图像- 用于经导管动脉化疗栓塞术 (TACE) 的药物洗脱珠 (DEB)。通过控制抗癌药物的药理学特性,向肿瘤提供更大的剂量,可以改善实体瘤的临床治疗;对于常规药物,该剂量通常受到正常组织中毒性全身副作用的限制。因此,当前抗癌治疗的功效可能会随着药物输送技术和范例的进步而提高,通过针、导管或能量(RFA 或 HIFU)增强或输送。癌症治疗中药物递送的目标是增加肿瘤中治疗剂的浓度,同时限制全身暴露和由此产生的正常组织毒性。药物输送技术与图像引导干预的结合代表了一个丰富的领域,具有巨大的转化潜力,并且能够弥合诊断和治疗之间的差距。
诊断和治疗在时间和空间上仍然明显分离。诊断和治疗之间的差距可以通过微创图像引导治疗来缩小。实时的程序内工具将诊断和治疗融入动态的迭代过程中,从而改善结果。多模态成像、导航、可视化、机器人和自动化精密工具推动了类似外科手术的最小化。这些使能技术尚未完全应用于现有的临床问题,特别是在微创图像引导治疗方面。这提供了一个机会,可以以经过验证且具有成本效益的方式将这些技术整合到临床环境中,并在更广泛的实施之前研究其影响。
图像引导和多模态导航推动了程序医学的一场小革命,带来了前所未有的机遇和挑战。图像引导和微创方法彻底改变了许多常见疾病的治疗。外科手术的小型化已广泛采用基于针或导管的手术,例如肿瘤栓塞、脑动脉瘤弹簧圈栓塞、主动脉支架移植、子宫肌瘤栓塞、动脉粥样硬化支架置入和血管成形术,以及射频或其他方式的癌症热消融或免疫激活。能量。随着手术的侵入性越来越小,它们越来越有针对性并由成像和空间信息引导。基于多个窗口或多种模式将医疗设备导航至目标的能力具有优势。同一笛卡尔 XYZ 坐标系上的功能和形态(代谢和解剖)信息的组合有助于解决诸如如何以及在何处应用人工智能模型进行 IR 癌症手术(如活检)等问题,以破译固有的时间和空间异质性。癌症(及相关生物标志物)。
与学术和私人合作伙伴一起开发了多模态介入放射学套件,该套件使用 CT 坐标系来共同配准和共同定位不同的设备,包括术前图像、术中超声、CT、旋转透视、内窥镜、机器人、电磁跟踪和治疗超声、微波、射频等,为每位患者定制和表征个性化的技术和指导方法的组合。结合成像模式可以充分利用每种模式的优势。超声的实时反馈和时间分辨率与 PET 的功能和代谢数据以及 MR 或 CT 的空间分辨率相结合,所有这些都在一个无缝平台上进行治疗计划、定位、程序导航、监测和治疗验证。电磁追踪临床试验纵向数千例患者。用于肿瘤消融和治疗计划以及前列腺活检的智能系统的研究使用信息,而不需要实际存在的成像设备(如 MRI)。
智能手机应用程序用于针定位的新用途已经得到部署,具有成本效益。智能手机指导已添加到临床试验中,增强现实平台应投入临床使用。
这项工作产生了大量的发现、论文和商业化产品。这项工作的结果是,该领域的许多供应商都采用了类似的多模态方法。 MRI 引导下前列腺癌激光消融的早期阶段已经完成,II-III 期工作于 2017 年秋季开始,此后继续单独使用超声引导前列腺癌局灶性消融。技术含量低、经济高效的导航方法包括基于针的活检和消融,以及无需昂贵设备的支气管镜导航。通过经尿道和经会阴通路以及经会阴超声的局部前列腺治疗将整个系统移出直肠。利用多种可用的衍生临床软件完善了综合治疗计划。药物洗脱免疫珠作为区域治疗的工具被配制并部署在肝脏化疗栓塞的临床前模型中。正在临床前模型和临床中研究和完善可成像药物洗脱珠,以开发药物剂量规划软件。研究人员对用于快速动脉闭塞的传导导管和血管内装置进行了研究和原型设计,并获得了有关装置的 NIH 专利。用于活检的光学和电磁跟踪针内窥镜检查已在 UO1 资助和临床试验下部署在临床中。在 NIH 校内研究计划的独一无二的“想法到实验台到临床到市场”的多模态转化环境中,改进是迭代的,并且是唯一可以实现的。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AngleNav: MEMS Tracker to Facilitate CT-Guided Puncture.
AngleNav:MEMS 跟踪器促进 CT 引导穿刺。
- DOI:
- 发表时间:2018-03
- 期刊:
- 影响因子:3.8
- 作者:Li, Rui;Xu, Sheng;Pritchard, William F;Karanian, John W;Krishnasamy, Venkatesh P;Wood, Bradford J;Tse, Zion Tsz Ho
- 通讯作者:Tse, Zion Tsz Ho
Morphometric characterization and temporal temperature measurements during hepatic microwave ablation in swine.
猪肝脏微波消融过程中的形态特征和时间温度测量。
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Varble, Nicole A;Bakhutashvili, Ivane;Reed, Sheridan L;Delgado, Jose;Tokoutsi, Zoi;Frackowiak, Bruno;Baragona, Marco;Karanian, John W;Wood, Bradford J;Pritchard, William F
- 通讯作者:Pritchard, William F
Transarterial Chemoembolization in a Woodchuck Model of Hepatocellular Carcinoma.
肝细胞癌土拨鼠模型中的经动脉化疗栓塞。
- DOI:
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Pritchard, William F;Woods, David L;Esparza;Starost, Matthew F;Mauda;Mikhail, Andrew S;Bakhutashvili, Ivane;Leonard, Shelby;Jones, Elizabeth C;Krishnasamy, Venkatesh;Karanian, John W;Wood, Bradford J
- 通讯作者:Wood, Bradford J
Virtual Treatment Zone From Cone Beam CT Commonly Alters Treatment Plan and Identifies Tumor at Risk for Under-Treatment in US or US Fusion-Guided Microwave Ablation of Liver Tumors.
锥束 CT 的虚拟治疗区通常会改变治疗计划,并识别美国或美国融合引导微波消融肝脏肿瘤中处于治疗不足风险的肿瘤。
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:2.8
- 作者:Arrichiello, Antonio;Ierardi, Anna Maria;Caruso, Alessandro;Grillo, Pasquale;Di Meglio, Letizia;Biondetti, Pierpaolo;Iavarone, Massimo;Sangiovanni, Angelo;Angileri, Salvatore Alessio;Floridi, Chiara;Wood, Bradford;Carrafiello, Gianpaolo
- 通讯作者:Carrafiello, Gianpaolo
Author Correction: In vitro characterization of immune modulating drug-eluting immunobeads towards transarterial embolization in cancer.
作者更正:免疫调节药物洗脱免疫珠对癌症经动脉栓塞的体外表征。
- DOI:
- 发表时间:2023-03-02
- 期刊:
- 影响因子:4.6
- 作者:Negussie, Ayele H;Mikhail, Andrew S;Owen, Joshua W;Hong, Natalie;Carlson, Camella J;Tang, Yiqing;Carrow, Kendal Paige;Mauda;Lewis, Andrew L;Karanian, John W;Pritchard, William F;Wood, Bradford J
- 通讯作者:Wood, Bradford J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradford Wood其他文献
Bradford Wood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradford Wood', 18)}}的其他基金
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
- 批准号:
8565354 - 财政年份:
- 资助金额:
-- - 项目类别:
Image Guided Focused Ultrasound For Drug Delivery and Tissue Ablation
用于药物输送和组织消融的图像引导聚焦超声
- 批准号:
8952856 - 财政年份:
- 资助金额:
-- - 项目类别:
Bench to Bedside: Non-invasive Treatment of Tumors in Children
从实验室到临床:儿童肿瘤的无创治疗
- 批准号:
10691781 - 财政年份:
- 资助金额:
-- - 项目类别:
Image Guided Focused Ultrasound For Drug Delivery and Tissue Ablation
用于药物输送和组织消融的图像引导聚焦超声
- 批准号:
10022064 - 财政年份:
- 资助金额:
-- - 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
- 批准号:
10022063 - 财政年份:
- 资助金额:
-- - 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
- 批准号:
7733647 - 财政年份:
- 资助金额:
-- - 项目类别:
Core Research Services for Molecular Imaging and Imaging Sciences
分子成像和成像科学的核心研究服务
- 批准号:
7733649 - 财政年份:
- 资助金额:
-- - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Defining The Role of Failed-Repair Proximal Tubule Cells in AdvancedRenal Disease in African Americans
确定修复失败的近端小管细胞在非裔美国人晚期肾病中的作用
- 批准号:
10740665 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The role of oligodendrocyte precursor cells in circuit remodeling in the mature brain
少突胶质细胞前体细胞在成熟脑回路重塑中的作用
- 批准号:
10750508 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of a conditional ataxin-1 knockout mouse line
条件性ataxin-1基因敲除小鼠品系的开发
- 批准号:
10642313 - 财政年份:2023
- 资助金额:
-- - 项目类别:
NASH-associated macrophages: regulation and role in disease pathogenesis
NASH 相关巨噬细胞:疾病发病机制中的调节和作用
- 批准号:
10675885 - 财政年份:2023
- 资助金额:
-- - 项目类别: