Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies

开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元

基本信息

  • 批准号:
    10722387
  • 负责人:
  • 金额:
    $ 11.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary In this MOSAIC K99/R00 Pathway to Independence application, Dr. Brian O’Grady proposes training in models of subarachnoid hemorrhage (SAH) and development of therapeutics that will strategically compliment his expertise in the development of arteriole-specific growth of ex vivo brain tissue in a biomimetic hydrogel and 3D printed microfluidic fabrication. The training plan is paired with scientific studies that will develop and apply a novel microfluidic device for modeling subarachnoid hemorrhage stroke events and for use as a screening platform for a dual-targeted nanoparticle as a potential therapeutic for the damage caused by SAH and delayed cerebral ischemia. Dr. O’Grady’s primary goal is to become an independent researcher focused on creating biomimetic in vitro models of the brain vasculature and developing novel therapeutics for neurological diseases. The rigorous training described and the outstanding team of mentors in vascular biology (Dr. Lippmann), neurological disease pathology (Dr. Jefferson), and nanoparticle development and therapeutics (Dr. Duvall) will ensure his success in transitioning to independence. Through his training plan, Dr. O’Grady will gain 1) deeper knowledge of blood-brain barrier physiology and the neurovascular unit; 2) experience synthesizing and characterizing nanoparticles; 3) knowledge of modeling SAH and neurological disorders in vitro; and 4) strategies for running a successful interdisciplinary and collaborative research lab. SAH is defined as a cerebrovascular disease with the initial event of a ruptured brain aneurysm and accounts for 5% of all types of strokes. Despite this small percentage, SAH accounts for one third of all stroke-related years of potential life lost before the age of 65. While a new era of neurocritical care management has contributed to improved outcomes for SAH, the secondary consequences result in delayed cerebral ischemia (DCI). DCI has varying degrees of patient functional outcome and has no known interventions to improve quality of life. This lack of effective treatments is largely attributed to the high failure rate of translating brain-targeting drugs from animals to humans. Recently, there has been a global effort to produce a tissue engineered, in vitro model system that can represent the complex vascular anatomy and microenvironment of the neurovascular unit. Dr. O’Grady’s preliminary work demonstrates that a novel biomimetic hydrogel supports induced pluripotent stem cell-derived neural, mural, and glial cells and induces arteriole-specific growth of ex vivo human brain vasculature. This new vasculature consists of anatomically correct, concentric layered structures that were previously unobtainable. When supported by a microfluidic device, the arterioles anastomose and can be lumen- perfused and photoablated. Based on his preliminary data, Dr. O’Grady hypothesizes that the dynamic neurovascular microenvironment of a stroke-like event can be accurately modeled by this new in vitro system. In addition to developing a new in vitro model of SAH, this project will test and validate the neural protective efficacy of a dual-targeted therapeutic for SAH and DCI in the human in vitro model.
项目概要 在这份 MOSAIC K99/R00 独立之路申请中,Brian O’Grady 博士建议进行以下方面的培训: 蛛网膜下腔出血 (SAH) 模型和战略性补充疗法的开发 他在仿生水凝胶中开发离体脑组织小动脉特异性生长方面的专业知识 该培训计划与开发和应用 3D 打印微流体制造的科学研究相结合。 用于模拟蛛网膜下腔出血中风事件并用作筛查的新型微流体装置 双靶点纳米颗粒平台作为 SAH 和延迟性损伤的潜在治疗方法 奥格雷迪博士的首要目标是成为一名专注于脑缺血的独立研究员。 创建脑血管系统的仿生体外模型并开发治疗小说 神经系统疾病方面所描述的严格培训和优秀的导师团队。 (李普曼博士)、神经疾病病理学(杰斐逊博士)以及纳米颗粒开发和治疗 (杜瓦尔博士)将确保他成功过渡到独立。通过他的培训计划,奥格雷迪博士将确保他成功过渡到独立。 获得 1) 更深入的血脑屏障生理学和神经血管单元知识 2) 经验; 纳米颗粒的合成和表征;3) SAH 和神经系统疾病建模知识 体外;4) 成功运行跨学科和协作研究实验室的策略。 SAH 被定义为一种以脑动脉瘤破裂为首发事件的脑血管疾病及其解释 占所有类型中风的 5%,尽管这一比例很小,但 SAH 却占所有中风相关疾病的三分之一。 65 岁之前损失的潜在寿命。虽然神经重症监护管理的新时代做出了贡献 为了改善 SAH 的预后,迟发性脑缺血 (DCI) 的继发后果已得到改善。 患者的功能结果有不同程度的变化,并且没有已知的干预措施可以改善生活质量。 缺乏有效的治疗方法很大程度上归因于从大脑中转化脑靶向药物的失败率很高。 最近,全球都在努力生产组织工程体外模型。 可以代表神经血管单元的复杂血管解剖结构和微环境的系统。 奥格雷迪的初步工作表明,一种新型仿生水凝胶支持诱导多能干 细胞衍生的神经细胞、壁细胞和神经胶质细胞,并诱导离体人脑的小动脉特异性生长 这种新的脉管系统由解剖学上正确的同心分层结构组成。 当微流体装置支持时,小动脉会吻合并且可以是腔内的。 奥格雷迪博士根据他的初步数据,证实了这一动态。 这种新的体外系统可以准确地模拟中风样事件的神经血管微环境。 除了开发新的蛛网膜下腔出血体外模型外,该项目还将测试和验证神经保护作用 双靶向疗法在人体体外模型中对 SAH 和 DCI 的疗效。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian J O'Grady其他文献

Brian J O'Grady的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

自由曲面空间网格结构3D打印节点力学性能与智能优化研究
  • 批准号:
    52378167
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
  • 批准号:
    22309176
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
  • 批准号:
    52375150
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
  • 批准号:
    82303979
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
  • 批准号:
    52303036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
  • 批准号:
    10643041
  • 财政年份:
    2023
  • 资助金额:
    $ 11.29万
  • 项目类别:
Design of the Glomerulus and bOwman cApsuLe on a chip (GOAL)
芯片上肾小球和鲍曼胶囊的设计(目标)
  • 批准号:
    10810038
  • 财政年份:
    2023
  • 资助金额:
    $ 11.29万
  • 项目类别:
Magnetic Bronchoscope for Improved Pulmonary Access
用于改善肺部通路的磁力支气管镜
  • 批准号:
    10152980
  • 财政年份:
    2021
  • 资助金额:
    $ 11.29万
  • 项目类别:
Smart Needle with Intelligent Robotic Control for Prostate Brachytherapy
用于前列腺近距离治疗的智能机器人控制智能针
  • 批准号:
    10627946
  • 财政年份:
    2021
  • 资助金额:
    $ 11.29万
  • 项目类别:
Toward tissue engineering of facet cartilage
面向小面软骨的组织工程
  • 批准号:
    10571696
  • 财政年份:
    2021
  • 资助金额:
    $ 11.29万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了