Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
基本信息
- 批准号:10643041
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAblationAddressAffectAnastomosis - actionAnimalsAutologousBacterial InfectionsBathingBenignBiochemicalBiocompatible MaterialsBlood VesselsCartilageCell CommunicationCell DensityCell ProliferationCell physiologyCellsCessation of lifeChondrogenesisComplexDefectDevicesEngineeringEpithelial CellsEpitheliumExtracellular MatrixGelGelatinGeometryGrowth FactorGunshot woundHistologicHistologyHumanImmune responseImplantIndividualInflammatory ResponseIntubationLasersLegal patentLifeMaintenanceMalignant NeoplasmsManualsMechanicsMesenchymal Stem CellsMilitary PersonnelModelingMucous MembraneNutrientOrganOryctolagus cuniculusPainPatientsPenetrationPerformancePhenotypePhysical condensationPhysiologicalPolymersPrintingProductionQuality of lifeRadialResolutionRespiratory FailureRoleSoldierSourceStentsStructureTechnologyTestingTherapeuticTissue DifferentiationTissue EngineeringTissue constructsTissuesTracheaTracheal StenosisTracheostomy procedureTraumaTubeTubular formationVascular SystemVascularizationVeteransWorkairway epitheliumbioinkbiomechanical testbioprintingbioscaffoldbronchial epitheliumcartilaginouscell typeclinically relevantcombatcrosslinkdesigndisabilityeffective therapyendothelial stem cellflexibilityhealingin vivomanufacturemechanical propertiesmilitary veteranparticlephysical propertypreventrespiratoryrestenosisscaffoldself assemblytissue regeneration
项目摘要
Abstract
As a result of prolonged intubation, tracheostomy, external trauma, penetrating fragment projectiles, gunshot
wounds and improvised explosive devices during combat, and benign or malignant tumors, many soldiers and
veterans in the US military suffer from severe trachea stenosis or damage that can cause complete airway failure,
Since there is no successful long-term treatment for long-segment tracheal stenosis or damage, tissue
engineering strategies have been explored to develop neotracheas using different combinations of biomaterials
and cell sources. However, biomaterial scaffold-based approaches often interfere with critical cell-cell
interactions, cell proliferation and new extracellular matrix production that are important during the formation of
functional trachea tissue. A functional replacement trachea must retain (1) radial rigidity to prevent restenosis,
(2) anastomose with host vasculature to adequately provide nutrients to the implant, and (3) contain respiratory
epithelium to provide a protective mucosal layer. Combining three-dimensional (3D) bioprinting technologies with
scaffold-free tissue engineering principles presents a powerful platform for engineering a multi-tissue functional
trachea, and would circumvent the aforementioned limitations of scaffold-based approaches. This proposal aims
to leverage the benefits of our recently developed individual cell-only 3D bioprinting technology, which allows for
printing of complex and high-resolution cell condensation-based tissue constructs to engineer functional
tracheas. We plan to print scaffold-free, multi-tissue neotracheas using multiple discrete individual cell-only
bioinks for spatially distinct differentiation of tissue types driven by spatially controlled presentation of tissue-
specific growth factors. Construct self-assembly will be driven by the condensation of autologously sourced
human mesenchymal stem cells (hMSCs) for cartilaginous tissue and autologous endothelial progenitor cells
and hMSCs for prevascular tissue, with autologous human bronchial epithelial cells applied to line the lumen of
the neotrachea. Specifically, this proposal aims to (1) examine the role of the physical properties of the microgel
support slurry on cell-only bioink printing, condensation formation/maintenance, and chondrogenesis of the 3D
bioprinted structures, (2) 3D bioprint cartilage ring constructs with chondrogenic bioink and prevascularized ring
constructs with vasculogenic bioink using the individual cell-only bioprinting technology, and (3) engineer
prevascularized and epithelized tracheal tissue with chondrogenic and vasculogenic bioinks using the individual
cell-only bioprinting technology. As an exploratory aim, the capacity of the engineered tracheas to restore airway
functionality will be evaluated in an animal defect model. This work ultimately seeks to utilize a facile and flexible
individual cell-only bioink 3D printing platform to engineer a patient-specific replacement trachea that provides
requisite physiologic and mechanical properties for replacement in those that are affected by long-segment
tracheal stenosis. The inherent flexibility of this individual cell-only 3D printing platform to create complex
structures composed of multiple spatially distinct tissue types can be leveraged to develop other multi-tissue
organs.
抽象的
由于长时间插管、气管切开、外伤、穿透性碎片射弹、枪伤
战斗中的伤口和简易爆炸装置,以及良性或恶性肿瘤,许多士兵和
美国退伍军人患有严重的气管狭窄或损伤,可能导致气道完全衰竭,
由于长段气管狭窄或损伤尚无成功的长期治疗方法,组织
已经探索了使用不同的生物材料组合来开发新气管的工程策略
和细胞来源。然而,基于生物材料支架的方法通常会干扰关键的细胞-细胞
相互作用、细胞增殖和新的细胞外基质产生,这些在细胞形成过程中非常重要
功能性气管组织。功能性替换气管必须保持 (1) 径向刚性以防止再狭窄,
(2) 与宿主脉管系统吻合,为植入物提供充足的营养,以及 (3) 包含呼吸系统
上皮细胞提供保护性粘膜层。将三维 (3D) 生物打印技术与
无支架组织工程原理为工程多组织功能提供了一个强大的平台
气管,并且将规避基于支架的方法的上述限制。该提案旨在
利用我们最近开发的单细胞 3D 生物打印技术的优势,该技术允许
打印复杂且高分辨率的基于细胞浓缩的组织结构以设计功能
气管。我们计划使用多个离散的单个细胞打印无支架的多组织新气管
生物墨水,用于由组织的空间控制呈现驱动的组织类型的空间明显分化
特定的生长因子。构建自组装将由自体来源的凝结驱动
用于软骨组织和自体内皮祖细胞的人间充质干细胞 (hMSC)
和hMSCs用于血管前组织,自体人支气管上皮细胞应用于排列血管内腔
新气管。具体来说,该提案旨在(1)检查微凝胶物理性质的作用
支持纯细胞生物墨水打印、凝结形成/维护和 3D 软骨形成的浆料
生物打印结构,(2) 具有软骨形成生物墨水和预血管化环的 3D 生物打印软骨环结构
使用仅单个细胞的生物打印技术构建血管生成生物墨水,以及 (3) 工程师
使用个体使用软骨形成和血管形成生物墨水来预血管化和上皮化气管组织
仅细胞生物打印技术。作为一个探索性目标,工程气管恢复气道的能力
将在动物缺陷模型中评估功能。这项工作最终寻求利用一种简便灵活的方法
仅单个细胞的生物墨水 3D 打印平台,用于设计患者特定的替换气管,提供
受长节段影响的患者需要更换所需的生理和机械特性
气管狭窄。这种单独的纯细胞 3D 打印平台具有固有的灵活性,可以创建复杂的
由多种空间上不同的组织类型组成的结构可用于开发其他多组织
器官。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eben Alsberg其他文献
Eben Alsberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eben Alsberg', 18)}}的其他基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
- 批准号:
10354662 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Mechanosensitive synthetic cell-regulatable hydrogels for tissue engineering
用于组织工程的机械敏感合成细胞调节水凝胶
- 批准号:
10570918 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
- 批准号:
9728716 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9923657 - 财政年份:2019
- 资助金额:
-- - 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
- 批准号:
9732428 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Engineering a Self-assembled, multi-tissue Tracheal Replacement
设计自组装多组织气管置换术
- 批准号:
9899066 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Opposing RNAi Molecule Gradient Constructs to Repair Osteochondral Defects
相反的 RNAi 分子梯度构建修复骨软骨缺损
- 批准号:
10263140 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Opposing RNAi molecule gradient constructs to repair osteochondral defects
相反的RNAi分子梯度构建修复骨软骨缺损
- 批准号:
9265388 - 财政年份:2016
- 资助金额:
-- - 项目类别:
High-Throughput Microenvironment Regulation for Chondrogenesis
软骨形成的高通量微环境调节
- 批准号:
9069425 - 财政年份:2015
- 资助金额:
-- - 项目类别:
相似国自然基金
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
- 批准号:52303036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
- 批准号:22378174
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
- 批准号:52375150
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Design of the Glomerulus and bOwman cApsuLe on a chip (GOAL)
芯片上肾小球和鲍曼胶囊的设计(目标)
- 批准号:
10810038 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Magnetic Bronchoscope for Improved Pulmonary Access
用于改善肺部通路的磁力支气管镜
- 批准号:
10152980 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Smart Needle with Intelligent Robotic Control for Prostate Brachytherapy
用于前列腺近距离治疗的智能机器人控制智能针
- 批准号:
10627946 - 财政年份:2021
- 资助金额:
-- - 项目类别: