Navigation tools for Image Guided Minimally invasive Therapies

图像引导微创治疗的导航工具

基本信息

  • 批准号:
    10022063
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Summary: Research in the Interventional Radiology (IR) lab is motivated by the fact that image guidance and minimally invasive approaches have revolutionized the management of many common diseases. However, diagnosis and therapy remain distinctly separated from each other in both time and space. We believe that this gap between diagnosis and therapy can be narrowed by minimally invasive image guided therapies and with the application of novel guidance technologies and engineered vectors. All research efforts in the IR lab are developed with a clear translational route to the clinic and address areas of urgent clinical need. The IR labs research program is separated into three main areas: electromagnetic (EM) and optical tracking and robotics, drug + device combinations, novel methods of augmentation of ablative energies (RFA, MWA, Laser, IRE, or HIFU). The diversity of these projects requires an interdisciplinary team of researchers and takes full advantage of the interdisciplinary resources found within the Clinical Center and the Intramural Research Program of the National Institutes of Health. We believe that combining the imaging tools inherent to interventional radiology with pharmaceuticals and medical devices can make a significant contribution to the future treatment of both localized and systemic diseases, with an emphasis upon cancer therapeutics. Principal projects are: 1) Smart biopsy, 2) OR of the future and, 3) Drugs + devices. Smart biopsy relies upon precise electromagnetic tracking to target tissue to correlate sample with imaging parameters. OR of the future is a broad translational project that integrates a variety of technologies for navigation, automation, and visualization of medical procedures. Sub-projects within the Drug + Device model include: 1) Temperature sensitive liposomes combined with radiofrequency ablation (RFA) or high intensity focused ultrasound (HIFU), 2) Radiofrequency ablation combined with immunotherapy / checkpoint inhibitor therapy, and 3) Development of image-able drug eluting beads (DEB) for trans-catheter arterial chemoembolization (TACE). The clinical treatment of solid tumors could be improved by controlling the pharmacologic properties of anticancer therapeutics to deliver a greater dose to the tumor; with conventional drugs, this dose is typically limited by toxic side effects in normal tissues. Therefore, the efficacy of current anticancer treatments may be improved with advances in drug delivery technologies that have received increased attention in recent years. The goal of drug delivery in the treatment of cancer is to increase the concentration of a therapeutic agent in the tumor while limiting systemic exposure and subsequent normal tissue toxicity. The combination of drug delivery technologies with image guided interventions represents a rich field with great translational potential and the ability to bridge the gap between diagnosis and therapy. Diagnosis and therapy remain distinctly separated from each other in time and space. The gap between diagnosis and therapy can be closed by minimally invasive image guided therapies. Real-time, intra-procedural tools will blend diagnosis and therapy into a dynamic, iterative process with improved outcomes. The redefining of surgical-like procedures will be fueled by multi-modality imaging, navigation, visualization, robotics, and automated precision tools. These enabling technologies have not yet been optimally applied to existing clinical problems, especially in minimally-invasive image guided therapies. This presents an opportunity to integrate these technologies into the clinical setting in a validated and cost-effective manner, and to study the impact prior to broad implementation. Image guidance and multimodality navigation will fuel a small revolution in procedural medicine, which presents unprecedented opportunity and challenge. Image guidance and minimally invasive approaches have revolutionized the management of many common diseases. The miniaturization of surgical interventions has seen the broad adoption of needle or catheter-based procedures such as tumor embolization, brain aneurysm coiling, aortic stent grafting, uterine fibroid embolization, atherosclerosis stenting and angioplasty, and tumor thermal ablation with radiofrequency. As procedures are becoming less and less invasive, they are more and more targeted and guided by imaging and spatial information. The ability to navigate a medical device to a target based upon multiple windows or multiple modalities should have tremendous advantages in certain settings. The combination of functional and morphologic (metabolic and anatomic) information on the same coordinate system is empowering. With multiple public and private partners, we have developed a multimodality interventional radiology suite that uses a CT coordinate frame to co-register and co-localize different devices including pre-procedural images, intra-procedural ultrasound, CT, rotational fluoroscopy, robotics, electromagnetic tracking and therapeutic ultrasound, microwave, radiofrequency, etc. to allow the best combinations of techniques and guidance methods tailored to the particular patients needs. Combining imaging modalities can take advantage of each modality's strength. Real-time feedback and temporal resolution of ultrasound can be combined with the functional and metabolic data from PET and the spatial resolution of MR or CT, all on one seamless platform for treatment planning, targeting, procedural navigation, monitoring, and verification of treatment. The lab has continued the electromagnetic tracking clinical trial with over 2000 patients. The lab also further studied Medical GPS for tumor ablation and treatment planning and for prostate biopsies using MRI information without requiring an MRI to be physically present. We have also started work in preparation for using other vendor's ultrasound source images for fusing real time ultrasound with pre-op images (CT, MRI, PET, etc). A novel use of the smartphone gyroscope as a handheld approach to needle positioning has led to an application soon to be available to the public. An augmented reality project should be placed into clinical use this year. This study yielded numerous discoveries, papers, and commercialized products. Also as a result of this work, numerous vendors in the field have adopted similar multi-modality approaches. Early Phase of laser ablation of prostate cancer under MRI guidance was completed and Phase II-III work began fall 2017 for using ultrasound alone to guide the prostate cancer ablation. Low tech, low cost methods for navigation continued, including laser guidance for needle based biopsy and ablation, and bronchoscopy navigation and laser ablation development. Preclinical work is in process for focal prostate therapies (laser ablation with real-time "MRI fluoroscopy") and clinical studies to plan and deliver a composite ablation treatment. A clinical trial is underway to study angle selection techniques and assess accuracy of CT integrated robot-like devices. Drug eluting beads as a tool for regional therapies was refined in preclinical models and will be combined with image-able beads that show where the drug is being delivered in liver chemoembolization with drug eluting beads. Image-able drug eluting beads are being studied and refined in preclinical models and clinic, in order to develop drug dose planning software. Conductive catheters and endovascular devices and embolization devices were studied and prototyped, and NIH patents were issued on devices. Optical needle endoscopy was prototyped and will be tested in CC patients next FY. Optical needle endoscopy will be tested under a UO1 grant and preclinical studies have started with anticipation of first in human trial Q1 FY 2019.
概括: 影像引导和微创方法彻底改变了许多常见疾病的治疗,这一事实推动了介入放射学 (IR) 实验室的研究。 然而,诊断和治疗在时间和空间上仍然明显分离。 我们相信,通过微创图像引导治疗以及新型引导技术和工程载体的应用,可以缩小诊断和治疗之间的差距。 IR 实验室的所有研究工作都是通过明确的临床转化途径开发的,并解决临床紧急需求的领域。 IR 实验室研究项目分为三个主要领域:电磁 (EM) 和光学跟踪和机器人、药物 + 设备组合、增强消融能量的新方法(RFA、MWA、激光、IRE 或 HIFU)。 这些项目的多样性需要一个跨学科的研究人员团队,并充分利用美国国立卫生研究院临床中心和校内研究项目内的跨学科资源。 我们相信,将介入放射学固有的成像工具与药物和医疗设备相结合,可以为局部和全身疾病的未来治疗做出重大贡献,重点是癌症治疗。 主要项目有:1) 智能活检,2) 未来的手术室,3) 药物+设备。智能活检依赖于对目标组织的精确电磁跟踪,将样本与成像参数相关联。未来的手术室是一个广泛的转化项目,集成了医疗程序导航、自动化和可视化的各种技术。 药物+器械模型的子项目包括:1)温度敏感脂质体结合射频消融(RFA)或高强度聚焦超声(HIFU),2)射频消融结合免疫疗法/检查点抑制剂疗法,以及3)图像开发- 用于经导管动脉化疗栓塞术 (TACE) 的药物洗脱珠 (DEB)。通过控制抗癌药物的药理学特性,向肿瘤提供更大的剂量,可以改善实体瘤的临床治疗;对于常规药物,该剂量通常受到正常组织中毒副作用的限制。 因此,随着近年来受到越来越多关注的药物输送技术的进步,当前抗癌治疗的疗效可能会得到改善。 癌症治疗中药物递送的目标是增加肿瘤中治疗剂的浓度,同时限制全身暴露和随后的正常组织毒性。 药物输送技术与图像引导干预的结合代表了一个丰富的领域,具有巨大的转化潜力,并且能够弥合诊断和治疗之间的差距。 诊断和治疗在时间和空间上仍然明显分离。诊断和治疗之间的差距可以通过微创图像引导治疗来缩小。实时的程序内工具将诊断和治疗融入动态的迭代过程中,从而改善结果。多模态成像、导航、可视化、机器人和自动化精密工具将推动类外科手术的重新定义。这些使能技术尚未最佳地应用于现有的临床问题,特别是在微创图像引导治疗中。这提供了一个机会,可以以经过验证且具有成本效益的方式将这些技术整合到临床环境中,并在广泛实施之前研究其影响。 图像引导和多模态导航将推动程序医学的一场小革命,这带来了前所未有的机遇和挑战。图像引导和微创方法彻底改变了许多常见疾病的治疗。外科手术的小型化已广泛采用基于针或导管的手术,例如肿瘤栓塞、脑动脉瘤弹簧圈栓塞、主动脉支架移植、子宫肌瘤栓塞、动脉粥样硬化支架置入和血管成形术以及射频肿瘤热消融。 随着手术的侵入性越来越小,它们越来越有针对性并由成像和空间信息引导。基于多个窗口或多模式将医疗设备导航到目标的能力在某些设置中应该具有巨大的优势。同一坐标系上的功能和形态(代谢和解剖)信息的结合是有力量的。 我们与多个公共和私人合作伙伴一起开发了多模态介入放射学套件,该套件使用 CT 坐标系来共同配准和共同定位不同的设备,包括术前图像、术中超声、CT、旋转透视、机器人、电磁跟踪和治疗超声、微波、射频等,以便根据特定患者的需求定制技术和指导方法的最佳组合。组合成像方式可以利用每种方式的优势。超声的实时反馈和时间分辨率可以与 PET 的功能和代谢数据以及 MR 或 CT 的空间分辨率相结合,所有这些都在一个无缝平台上进行治疗计划、目标定位、程序导航、监测和治疗验证。该实验室继续对2000多名患者进行电磁追踪临床试验。该实验室还进一步研究了医疗 GPS,用于肿瘤消融和治疗计划以及使用 MRI 信息进行前列腺活检,而无需 MRI 亲自在场。我们还开始准备使用其他供应商的超声源图像将实时超声与术前图像(CT、MRI、PET 等)融合。 智能手机陀螺仪作为针定位的手持方法的新颖用途使得该应用程序很快向公众开放。一个增强现实项目将于今年投入临床使用。 这项研究产生了大量的发现、论文和商业化产品。这项工作的结果是,该领域的许多供应商都采用了类似的多模态方法。 MRI引导下前列腺癌激光消融的早期阶段已经完成,并于2017年秋季开始仅使用超声引导前列腺癌消融的II-III期工作。低技术、低成本的导航方法仍在继续,包括用于针基活检和消融的激光引导,以及支气管镜导航和激光消融的开发。局灶性前列腺治疗(实时“MRI 透视”激光消融)的临床前工作正在进行中,并且正在进行临床研究,以规划和实施复合消融治疗。一项临床试验正在进行中,以研究角度选择技术并评估 CT 集成机器人设备的准确性。药物洗脱珠作为区域治疗的工具在临床前模型中进行了改进,并将与可成像珠相结合,显示药物在肝脏化疗栓塞中通过药物洗脱珠输送的位置。正在临床前模型和临床中研究和完善可成像药物洗脱珠,以开发药物剂量规划软件。对传导导管、血管内装置和栓塞装置进行了研究和原型设计,并获得了有关装置的 NIH 专利。光针内窥镜已完成原型设计,并将于下个财年在 CC 患者中进行测试。光针内窥镜检查将在 UO1 资助下进行测试,临床前研究已经开始,预计将于 2019 财年第一季度进行首次人体试验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bradford Wood其他文献

Bradford Wood的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bradford Wood', 18)}}的其他基金

Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    8565354
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Image Guided Focused Ultrasound For Drug Delivery and Tissue Ablation
用于药物输送和组织消融的图像引导聚焦超声
  • 批准号:
    8952856
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Bench to Bedside: Non-invasive Treatment of Tumors in Children
从实验室到临床:儿童肿瘤的无创治疗
  • 批准号:
    10691781
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Image Guided Focused Ultrasound For Drug Delivery and Tissue Ablation
用于药物输送和组织消融的图像引导聚焦超声
  • 批准号:
    10022064
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation Tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    10920174
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Navigation tools for Image Guided Minimally invasive Therapies
图像引导微创治疗的导航工具
  • 批准号:
    7733647
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    8952858
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    10920176
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Core Research Services for Molecular Imaging and Imaging Sciences
分子成像和成像科学的核心研究服务
  • 批准号:
    7733649
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
Interventional Oncology
介入肿瘤学
  • 批准号:
    9360475
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
  • 批准号:
    10649087
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Defining The Role of Failed-Repair Proximal Tubule Cells in AdvancedRenal Disease in African Americans
确定修复失败的近端小管细胞在非裔美国人晚期肾病中的作用
  • 批准号:
    10740665
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The role of oligodendrocyte precursor cells in circuit remodeling in the mature brain
少突胶质细胞前体细胞在成熟脑回路重塑中的作用
  • 批准号:
    10750508
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of a conditional ataxin-1 knockout mouse line
条件性ataxin-1基因敲除小鼠品系的开发
  • 批准号:
    10642313
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
NASH-associated macrophages: regulation and role in disease pathogenesis
NASH 相关巨噬细胞:疾病发病机制中的调节和作用
  • 批准号:
    10675885
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了