Smart Needle with Intelligent Robotic Control for Prostate Brachytherapy

用于前列腺近距离治疗的智能机器人控制智能针

基本信息

  • 批准号:
    10627946
  • 负责人:
  • 金额:
    $ 17.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT Brachytherapy procedure is one of the most popular treatment modalities for prostate cancer where cancerous cells are irradiated and destroyed locally by the radioactive dosage of seeds implanted by the surgeon. The success of brachytherapy heavily relies on safe and precise placement of the seeds in or adjacent to the cancerous cells. The procedure demands a very experienced surgeon who have developed an intuitive feel in needle insertions and is able to guide the needle into a desired location with hand-eye coordination and assistance of an imaging device. However, with conventional rigid needles, only a straight path is achievable towards the target, and thereby seed placements require several insertions with a high tissue damage on the needle’s path. A recent study has shown that guiding the needle in a curvilinear approach will decrease the number of needle insertions required and provide other dosimetric benefits. Lack of actuation and control (after the needle is inserted into the patient’s body) is another factor that make the procedure challenging. A flexible 3D steerable “smart” needle with multi-directional actuation and a reliable guidance control and guidance can aid the surgeon to perform the task with more accuracy, reduced invasiveness, and in a curvilinear approach. Furthermore, teleoperative guidance for the smart needle will endow the robotic instrument with intelligence. On the other hand, in-depth understanding of the needle-tissue interaction mechanism (with intraoperative model parameter updates and shape- and force-sensing) is a key factor in development of an appropriate control and guidance strategies to compensate for system uncertainties. This work will first develop an active “smart” brachytherapy needle that will provide robust actuation, shape- and force-sensing, and 3D motion in tissue. Then a teleoperative interface with robot-driven smart needle will be developed to perform semi- automated brachytherapy. Realistic analytical and computational models of needle-tissue interactions will be developed using realistic tissue characteristics. These models will be used in the control system as dynamic models to make appropriate decisions during an insertion task. The innovative features of our proposed methods rely on our cutting-edge smart needle design, new dynamic models, shape- and force-sensing, and control algorithm specifically developed for this application. The present studies will develop a clinically acceptable size “smart” surgical needle with a robotic control interface and evaluate its impact in brachytherapy procedure. Utilization of active and passive flexible needles for diagnosis and therapeutic procedures is a rapidly advancing filed. This proposed research has a high potential to lead to a revolutionary needle insertion practice in healthcare that is also beneficial to various needle-based procedures such as drug delivery, biopsy, and interventional therapy where an accurate placement is needed with minimal tissue damage.
项目概要/摘要 近距离放射治疗程序是前列腺癌最流行的治疗方式之一,其中癌细胞在前列腺癌中 通过外科医生植入的放射性剂量的粒子进行局部照射和破坏 近距离放射治疗的成功。 很大程度上依赖于将种子安全且精确地放置在癌细胞中或癌细胞附近。 非常有经验的外科医生,他们对针插入有直观的感觉,并且能够引导针进入 然而,使用传统的刚性针,通过手眼协调和成像设备的帮助来定位所需的位置。 只能实现通往目标的直线路径,因此种子放置需要多次插入,且具有高 最近的一项研究表明,以曲线方式引导针会减少针路径上的组织损伤。 所需的针插入次数并提供其他剂量测定益处(在注射后)。 针插入患者体内)是该手术具有挑战性的另一个因素 灵活的 3D 可操纵。 具有多向驱动和可靠的引导控制和引导的“智能”针可以帮助外科医生执行 更准确地完成任务,减少侵入性,并且采用曲线方法此外,还可以进行远程操作指导。 另一方面,智能针将赋予机器人仪器智能化。 针-组织相互作用机制(具有术中模型参数更新以及形状和力传感)是关键 制定适当的控制和指导策略以补偿系统不确定性的因素。 将首先开发一种主动“智能”近距离治疗针,该针将提供强大的驱动、形状和力感应,以及 然后,将开发具有机器人驱动的智能针的远程操作接口来执行半组织中的 3D 运动。 将开发针与组织相互作用的现实分析和计算模型。 使用真实的组织特征,这些模型将在控制系统中用作动态模型,以做出适当的处理。 我们提出的方法的创新特征依赖于我们尖端的智能针。 设计、新的动态模型、形状和力传感以及专门为此应用开发的控制算法。 目前的研究将开发一种临床可接受尺寸的“智能”手术针,带有机器人控制接口和 评估其在近距离放射治疗过程中使用主动和被动柔性针进行诊断和治疗的影响。 治疗程序是一个快速发展的领域,这项研究很有可能带来革命性的结果。 医疗保健中的针插入实践也有利于各种基于针的程序,例如药物输送、 活检和介入治疗,需要精确放置并尽量减少组织损伤。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Steering a Tendon-Driven Needle in High-Dose-Rate Prostate Brachytherapy for Patients with Pubic Arch Interference.
在耻骨弓干扰患者的高剂量率前列腺近距离放射治疗中操纵肌腱驱动针。
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Konh, Bardia;Padasdao, Blayton;Batsaikhan, Zolboo;Lederer, John
  • 通讯作者:
    Lederer, John
A Model to Predict Deflection of an Active Tendon-Driven Notched Needle Inside Soft Tissue.
预测软组织内活动肌腱驱动缺口针偏转的模型。
  • DOI:
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Padasdao, Blayton;Konh, Bardia
  • 通讯作者:
    Konh, Bardia
Kinematics modelling and dynamics analysis of an SMA-actuated active flexible needle for feedback-controlled manipulation in phantom.
用于体模反馈控制操作的 SMA 驱动主动柔性针的运动学建模和动力学分析。
  • DOI:
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Karimi, Saeed;Konh, Bardia
  • 通讯作者:
    Konh, Bardia
Teleoperated and Automated Control of a Robotic Tool for Targeted Prostate Biopsy.
用于靶向前列腺活检的机器人工具的远程操作和自动控制。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Padasdao, Blayton;Lafreniere, Samuel;Rabiei, Mahsa;Batsaikhan, Zolboo;Konh, Bardia
  • 通讯作者:
    Konh, Bardia
A mechanics-based model for a tendon-driven active needle navigating inside a multiple-layer tissue.
基于力学的模型,用于肌腱驱动的主动针在多层组织内导航。
  • DOI:
  • 发表时间:
    2024-03-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Padasdao, Blayton;Konh, Bardia
  • 通讯作者:
    Konh, Bardia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bardia Konh其他文献

Bardia Konh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bardia Konh', 18)}}的其他基金

Smart Needle with Intelligent Robotic Control for Prostate Brachytherapy
用于前列腺近距离治疗的智能机器人控制智能针
  • 批准号:
    10460613
  • 财政年份:
    2021
  • 资助金额:
    $ 17.87万
  • 项目类别:
Smart Needle with Intelligent Robotic Control for Prostate Brachytherapy
用于前列腺近距离治疗的智能机器人控制智能针
  • 批准号:
    10300849
  • 财政年份:
    2021
  • 资助金额:
    $ 17.87万
  • 项目类别:

相似国自然基金

基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
  • 批准号:
    82303979
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3D打印单向流场诱导构筑多级有序电磁屏蔽结构及调控机理研究
  • 批准号:
    52303036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3D纳米打印复合金属硫化物阵列反应器光催化CO2还原制C2研究
  • 批准号:
    22378174
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
  • 批准号:
    52378167
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
丝内/丝间空洞对3D打印连续纤维复合材料损伤机理影响机制与分析方法
  • 批准号:
    52375150
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

ADDITIVE MANUFACTURING OF PDMS MICROFLUIDICS
PDMS 微流控的增材制造
  • 批准号:
    10698810
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
High-Speed, Low-Cost, Image Remapping Spectral Domain Full-Field Optical Coherence Tomography for Retinal Imaging
用于视网膜成像的高速、低成本图像重映射谱域全场光学相干断层扫描
  • 批准号:
    10670648
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
ADDITIVE MANUFACTURING OF PDMS MICROFLUIDICS
PDMS 微流控的增材制造
  • 批准号:
    10698810
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
3D printing glass micro-objectives for ultrathin endoscope
3D打印超薄内窥镜玻璃显微物镜
  • 批准号:
    10377856
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
An Automated Microfluidics Technology for Minimally Disruptive Analysis of Cells and Fluids within Living 3D Cultures
用于对活体 3D 培养物中的细胞和液体进行最小破坏性分析的自动化微流体技术
  • 批准号:
    10414469
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了