Molecular mechanisms underlying cortical interneuron synaptic specificity
皮质中间神经元突触特异性的分子机制
基本信息
- 批准号:10558671
- 负责人:
- 金额:$ 38.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-15 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesionsAutomobile DrivingAxonBindingBiological AssayBrainBrain DiseasesBrain InjuriesCellsDataDevelopmentDiseaseEctopic ExpressionElectroporationEnsureEpilepsyEquilibriumEtiologyFunctional disorderGene ExpressionGene TransferGenerationsGoalsIndividualInterneuronsKnock-outKnockout MiceLocationMedialMediatingModelingMolecularMorphologyMusNeuronsPhenotypePhysiologyPlayPrefrontal CortexPresynaptic TerminalsPropertyProteinsRoleSchizophreniaSeriesShapesSignal TransductionSpecificitySynapsesSystemTestingTherapeuticTransplantationViral Genesautism spectrum disordercell typeexperimental studygenome editinghippocampal pyramidal neuronin vivoinsightmalformationmouse geneticsneurofascinnovelpermissivenesspostsynaptic neuronspresynapticpresynaptic neuronsreceptorrepairedstereotypysuccesssynaptogenesis
项目摘要
Project Summary/Abstract
Cortical inhibitory GABAergic interneurons (INs), which develop intricate local circuits, critically regulate higher-
order brain functions by balancing and shaping neuronal activity. Consistent with its indispensable role in
normal brain functions, malformation/malfunction of the inhibitory system is implicated in a wide array of brain
disorders such as schizophrenia, autism, and epilepsy. Despite their importance, the molecular mechanisms
underlying the wiring of IN local circuits remain largely unknown. Cortical INs comprise diverse cell types that
are defined by morphology, physiology, and gene expression. Notably, different IN subtypes also show distinct
synaptic specificity at laminar/cellular as well as subcellular levels. Although subtype-specific synaptic
connectivity is considered a critical property of INs to ensure functional diversity of the inhibitory system, the
molecular mechanisms underlying IN synaptic specificity remains poorly understood. The objective of this
proposal is to determine the molecular mechanisms by which IN subtypes establish layer/cell type-
and subcellular domain-specific synapses. To achieve this goal, we will perform a series of experiments
using chandelier cells (ChCs), which exclusively innervate axon initial segments (AISs) of layer-specific
pyramidal neurons (PNs). The ChC is known to critically regulate PN spike generation and has been implicated
in schizophrenia and epilepsy. Besides their functional significance, the stereotypy of their synaptic
organization make ChCs an attractive model to study the molecular mechanisms for IN synaptic specificity.
Our preliminary data has shown that: (1) IgSF11 proteins that are known to bind with each other are expressed
in both ChCs and layer-specific target PNs, (2) Gldn proteins that are known to bind to AIS-enriched proteins,
NF186, are preferentially expressed in ChCs, (3) IgSF11 in ChCs plays an essential role in their presynaptic
development, (4) Gldn and NF186 appear to play a role in initiating ChC synapses, and (5) IgSF11 that is free
from the Gldn-NF186 system appears not to induce ChC synapses. Based on our findings, we propose to test
the hypothesis that the layer-specific synaptogenic action and the subcellular domain-specific recognition
mediated through IgSF11 homophilic interactions and Gldn-NF186 interactions, respectively, cooperatively
determine ChC synaptic specificity. We will pursue the following specific aims to test our hypothesis. In Aim 1,
we will determine the role of the IgSF11 homophilic interaction between pre- and postsynaptic neurons in
layer-specific synapse formation by ChCs. In Aim 2, we will determine the role of Gldn and NF186 in ChC
synapse formation on AISs. In Aim 3, we will determine the regulatory role of NF186/Gldn in gating IgSF11
signaling to induce ChC presynaptic boutons at AISs. Upon completion of this study, we will gain not only
important insights into molecular mechanisms for IN wiring but also a clue to developing therapeutic strategies
to functionally repair disordered/damaged brains.
项目概要/摘要
皮质抑制性 GABA 能中间神经元 (IN) 形成复杂的局部回路,关键性地调节高级
通过平衡和塑造神经元活动来调节大脑功能。与其不可或缺的作用相一致
正常的大脑功能,抑制系统的畸形/故障与大脑的多种功能有关
精神分裂症、自闭症和癫痫等疾病。尽管它们很重要,但分子机制
IN 本地电路的布线背后仍然很大程度上未知。皮质 IN 包含多种细胞类型
由形态学、生理学和基因表达来定义。值得注意的是,不同的 IN 亚型也表现出不同的
层/细胞以及亚细胞水平的突触特异性。尽管亚型特异性突触
连接性被认为是 IN 的一个关键特性,以确保抑制系统的功能多样性,
IN 突触特异性的分子机制仍然知之甚少。此举的目的
建议是确定 IN 亚型建立层/细胞类型的分子机制 -
和亚细胞域特异性突触。为了实现这个目标,我们将进行一系列的实验
使用枝形吊灯细胞(ChCs),它专门支配特定层的轴突初始段(AIS)
锥体神经元(PN)。众所周知,ChC 严格调节 PN 尖峰的产生,并已被牵涉其中
用于精神分裂症和癫痫症。除了它们的功能意义之外,它们的突触的刻板印象
组织使 ChC 成为研究 IN 突触特异性分子机制的有吸引力的模型。
我们的初步数据表明: (1) 表达已知相互结合的 IgSF11 蛋白
在 ChC 和层特异性目标 PN 中,(2) 已知可与富含 AIS 的蛋白质结合的 Gldn 蛋白质,
NF186,优先在 ChC 中表达,(3) ChC 中的 IgSF11 在其突触前发挥重要作用
(4) Gldn 和 NF186 似乎在启动 ChC 突触中发挥作用,(5) 游离的 IgSF11
Gldn-NF186 系统似乎不会诱导 ChC 突触。根据我们的发现,我们建议测试
层特异性突触发生作用和亚细胞域特异性识别的假设
分别通过 IgSF11 同嗜性相互作用和 Gldn-NF186 相互作用介导
确定 ChC 突触特异性。我们将追求以下具体目标来检验我们的假设。在目标 1 中,
我们将确定突触前和突触后神经元之间 IgSF11 同亲相互作用的作用
ChC 形成层特异性突触。在目标 2 中,我们将确定 Gldn 和 NF186 在 ChC 中的作用
AIS 上的突触形成。在目标 3 中,我们将确定 NF186/Gldn 在门控 IgSF11 中的调节作用
信号传导在 AIS 处诱导 ChC 突触前接触。完成本次学习,我们将收获的不仅是
对 IN 接线分子机制的重要见解,也是制定治疗策略的线索
功能性修复紊乱/受损的大脑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIROKI TANIGUCHI其他文献
HIROKI TANIGUCHI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIROKI TANIGUCHI', 18)}}的其他基金
The role of acetylcholine signaling in the axonal wiring of cortical interneurons
乙酰胆碱信号在皮质中间神经元轴突布线中的作用
- 批准号:
10578784 - 财政年份:2022
- 资助金额:
$ 38.23万 - 项目类别:
Wiring and developmental principles of inhibitory neocortical circuits
抑制性新皮质回路的布线和发育原理
- 批准号:
10478363 - 财政年份:2022
- 资助金额:
$ 38.23万 - 项目类别:
The role of acetylcholine signaling in the axonal wiring of cortical interneurons
乙酰胆碱信号在皮质中间神经元轴突布线中的作用
- 批准号:
10372840 - 财政年份:2022
- 资助金额:
$ 38.23万 - 项目类别:
Molecular mechanisms underlying cortical interneuron synaptic specificity
皮质中间神经元突触特异性的分子机制
- 批准号:
10523360 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别:
Molecular mechanisms underlying cortical interneuron synaptic specificity
皮质中间神经元突触特异性的分子机制
- 批准号:
10096397 - 财政年份:2021
- 资助金额:
$ 38.23万 - 项目类别:
相似国自然基金
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
- 批准号:82371641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
- 批准号:82360298
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
SPP1+M2巨噬细胞促进宫腔粘连内膜纤维化的机制和干预研究
- 批准号:82371636
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
相似海外基金
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Radioresistant Innate Immunity in SAVI Tissue-Specific Autoinflammation
SAVI 组织特异性自身炎症中的抗辐射先天免疫
- 批准号:
10752556 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Interrogating the Potential of Ccn1+ Astrocyte Niches to Drive Angiogenesis after Spinal Cord Injury
探讨 Ccn1 星形胶质细胞生态位在脊髓损伤后驱动血管生成的潜力
- 批准号:
10607960 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别:
Mechanisms of KSHV-induced endothelial cell loss of contact inhibition of proliferation
KSHV诱导内皮细胞失去接触抑制增殖的机制
- 批准号:
10762813 - 财政年份:2023
- 资助金额:
$ 38.23万 - 项目类别: