Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
基本信息
- 批准号:10735701
- 负责人:
- 金额:$ 38.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalATAC-seqActomyosinAddressAdherent CultureAdhesionsAdhesivesAlginatesAutomobile DrivingBasement membraneBindingBiocompatible MaterialsBioinformaticsBiological AssayBiological ProcessBiophysical ProcessBiophysicsBreast Epithelial CellsCRISPR screenCRISPR/Cas technologyCell AdhesionCell ProliferationCell VolumesCellsCharacteristicsChromatinCollagen Type IDataDepositionDiseaseElasticityEpigenetic ProcessEpithelial CellsExhibitsExtracellular MatrixFibroblastsGene ExpressionGenesGenetic TranscriptionGoalsHumanHydrogelsIntegrin BindingIntegrinsIon ChannelKnock-outKnowledgeLigandsLiquid substanceMAP Kinase GeneMechanicsMediatingMesenchymal Stem CellsMissionMolecularMolecular AnalysisMorphogenesisPIK3CG genePathway interactionsProcessProliferatingRegulationRelaxationResearchRoleSignal PathwaySolidSp1 Transcription FactorStressTissuesTranscriptional RegulationUnited States National Institutes of HealthViscosityWorkbiophysical techniquescancer cellcell behaviordensitydisabilityepigenetic regulationepigenomegenome-widegenome-wide analysisin vivoinnovationmechanotransductionmigrationnovelreconstitutionresponsestem cell differentiationthree dimensional cell culturetooltranscriptome sequencingviscoelasticitywhole genome
项目摘要
Cell proliferation is a fundamental biological process that often occurs for cells in a 3D context in vivo, in which
cells are surrounded by extracellular matrix (ECM) and other cells, and various applications rely on the
proliferation of cells within a biomaterial. It has long been known that changes in matrix stiffness impact cell
behaviors through mechanotransduction, and mechanisms of stiffness-sensing in 2D culture are now
established. However, the mechanisms mediating the impact of changes in matrix stiffness on cell proliferation
in 3D remain unclear. Further, living tissues and ECMs are viscoelastic, exhibiting some characteristics of elastic
solids and some of viscous liquids. Matrix viscoelasticity is sensed through mechanotransduction, and we have
found that changes in matrix viscoelasticity impact cell spreading, migration, proliferation, stem cell
differentiation, matrix deposition, morphogenesis, and gene expression. However, the mechanisms mediating
the impact of matrix viscoelasticity on these processes, particularly proliferation remain unclear. The goal of the
proposed work is to determine the mechanism mediating the impact of matrix stiffness and viscoelasticity on cell
proliferation in 3D matrices. Our overall hypothesis is that mechanosensitive ion channel-mediated pathways
and integrin-mediated pathways interplay to sense matrix viscoelasticity and stiffness, and subsequently control
proliferation through changes in chromatin accessibility, YAP-independent transcription, and a set of molecular
regulators not implicated from 2D culture studies. We will address this hypothesis in 3 aims, using an approach
that involves the use of alginate hydrogels with independently tunable viscoelasticity, stiffness, and RGD ligand
density for 3D culture of adherent cells, including fibroblasts, epithelial cells, and mesenchymal stem cells. In
aim 1, we will determine the biophysical mechanisms underlying the impact of hydrogel viscoelasticity, stiffness,
and adhesivity on the proliferation of adherent cells in 3D culture. In Aim 2, we will elucidate transcriptional and
epigenetic regulation of mechanotransduction and proliferation, using RNA-seq and ATAC-seq combined with
advanced bioinformatics analyses. In Aim 3, we will identify novel regulators of proliferation and
mechanotransduction in 3D using genome-wide CRISPR screening. Innovative aspects of this approach include
the study of mechanisms mediating mechanotrasduction and proliferation in 3D matrices, the focus on
viscoelasticity (beyond stiffness), the potential for discovering YAP-independent mechanisms of
mechanotransduction, the identification of how the epigenome regulates mechanotransduction and proliferation
in 3D, and the application of a CRISPR screen to identify novel molecular regulators of mechanotransduction.
The significance of this work is that it will determine the biophysical and molecular mechanisms by which ECM
or biomaterial stiffness and viscoelasticity regulate cell proliferation in 3D. Given the importance of cell
proliferation, the ubiquity of matrix viscoelasticity in ECMs, and the potential relevance of discovered
mechanisms of mechanotransduction to other processes, the significance is expected to be high.
细胞增殖是体内 3D 环境中细胞经常发生的基本生物过程,其中
细胞被细胞外基质(ECM)和其他细胞包围,各种应用都依赖于
生物材料内细胞的增殖。人们早就知道基质刚度的变化会影响细胞
通过机械传导的行为,以及二维文化中的刚度感知机制现在
已确立的。然而,介导基质硬度变化对细胞增殖影响的机制
3D 仍不清楚。此外,活组织和 ECM 是粘弹性的,表现出弹性的一些特征
固体和一些粘性液体。基质粘弹性是通过力传导来感知的,我们有
发现基质粘弹性的变化影响细胞扩散、迁移、增殖、干细胞
分化、基质沉积、形态发生和基因表达。然而,调解机制
基质粘弹性对这些过程,特别是增殖的影响仍不清楚。的目标
建议的工作是确定介导基质刚度和粘弹性对细胞影响的机制
3D 矩阵中的增殖。我们的总体假设是机械敏感离子通道介导的途径
和整合素介导的途径相互作用以感知基质粘弹性和刚度,并随后进行控制
通过染色质可及性的变化、YAP 独立转录和一组分子
2D 培养研究未涉及监管机构。我们将使用一种方法通过 3 个目标来解决这个假设
涉及使用具有独立可调的粘弹性、刚度和 RGD 配体的藻酸盐水凝胶
贴壁细胞 3D 培养的密度,包括成纤维细胞、上皮细胞和间充质干细胞。在
目标 1,我们将确定影响水凝胶粘弹性、刚度、
以及粘附性对 3D 培养中贴壁细胞增殖的影响。在目标 2 中,我们将阐明转录和
使用 RNA-seq 和 ATAC-seq 结合机械转导和增殖的表观遗传调控
先进的生物信息学分析。在目标 3 中,我们将确定新的增殖调节因子和
使用全基因组 CRISPR 筛选进行 3D 机械转导。这种方法的创新之处包括
研究 3D 矩阵中介导机械传导和增殖的机制,重点是
粘弹性(超越刚度),发现与 YAP 无关的机制的潜力
机械转导,识别表观基因组如何调节机械转导和增殖
3D 技术,以及应用 CRISPR 筛选来识别机械转导的新型分子调节剂。
这项工作的意义在于它将确定 ECM 的生物物理和分子机制
或生物材料的刚度和粘弹性在 3D 中调节细胞增殖。鉴于细胞的重要性
增殖、ECM 中基质粘弹性的普遍性以及所发现的潜在相关性
机械传导机制对其他过程的意义预计会很高。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ovijit Chaudhuri其他文献
Ovijit Chaudhuri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ovijit Chaudhuri', 18)}}的其他基金
Role of extracellular matrix malleability in mediating breast cancer cell invasion and migration
细胞外基质可塑性在介导乳腺癌细胞侵袭和迁移中的作用
- 批准号:
10080718 - 财政年份:2018
- 资助金额:
$ 38.6万 - 项目类别:
Role of extracellular matrix malleability in mediating breast cancer cell invasion and migration
细胞外基质可塑性在介导乳腺癌细胞侵袭和迁移中的作用
- 批准号:
10314031 - 财政年份:2018
- 资助金额:
$ 38.6万 - 项目类别:
Hydrogels with Controlled Degradation and Stress Relaxation for Engineered Cartilage
用于工程软骨的具有受控降解和应力松弛的水凝胶
- 批准号:
9770767 - 财政年份:2018
- 资助金额:
$ 38.6万 - 项目类别:
Role of extracellular matrix malleability in mediating breast cancer cell invasion and migration
细胞外基质可塑性在介导乳腺癌细胞侵袭和迁移中的作用
- 批准号:
10443246 - 财政年份:2018
- 资助金额:
$ 38.6万 - 项目类别:
The role of mechanics in tumor progression and malignancy
力学在肿瘤进展和恶性肿瘤中的作用
- 批准号:
8305963 - 财政年份:2010
- 资助金额:
$ 38.6万 - 项目类别:
The role of mechanics in tumor progression and malignancy
力学在肿瘤进展和恶性肿瘤中的作用
- 批准号:
8165998 - 财政年份:2010
- 资助金额:
$ 38.6万 - 项目类别:
The role of mechanics in tumor progression and malignancy
力学在肿瘤进展和恶性肿瘤中的作用
- 批准号:
8003609 - 财政年份:2010
- 资助金额:
$ 38.6万 - 项目类别:
相似国自然基金
基于ATAC-seq策略挖掘穿心莲基因组中调控穿心莲内酯合成的增强子
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于单细胞ATAC-seq技术的C4光合调控分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于ATAC-seq技术研究交叉反应物质197调控TFEB介导的自噬抑制子宫内膜异位症侵袭的分子机制
- 批准号:82001520
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
人类胎盘合体滋养层形成分子机制及其与子痫前期发生关联的研究
- 批准号:31900602
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Innate and Adaptive Immune Markers in Farming Lifestyle and Early Atopic Diseases
农业生活方式和早期特应性疾病中的先天性和适应性免疫标志物
- 批准号:
10633369 - 财政年份:2023
- 资助金额:
$ 38.6万 - 项目类别:
Phenotypic sorting of cancer cells to study the role and control of cell stiffness in the in vivo metastatic cascade
对癌细胞进行表型分选,研究细胞硬度在体内转移级联中的作用和控制
- 批准号:
10679871 - 财政年份:2023
- 资助金额:
$ 38.6万 - 项目类别:
The Role of Chromosome Y in Human Microglia and Neurodevelopment
Y 染色体在人类小胶质细胞和神经发育中的作用
- 批准号:
10680304 - 财政年份:2023
- 资助金额:
$ 38.6万 - 项目类别:
Sex, Physiological State, and Genetic Background Dependent Molecular Characterization of CircuitsGoverning Parental Behavior
控制父母行为的回路的性别、生理状态和遗传背景依赖性分子特征
- 批准号:
10661884 - 财政年份:2023
- 资助金额:
$ 38.6万 - 项目类别:
Defining molecular mechanisms by which stimulant evoked dopamine drives inflammation and neuronal dysfunction in neuroHIV
定义兴奋剂诱发多巴胺驱动神经艾滋病毒炎症和神经元功能障碍的分子机制
- 批准号:
10685160 - 财政年份:2023
- 资助金额:
$ 38.6万 - 项目类别: