Interrogating the Potential of Ccn1+ Astrocyte Niches to Drive Angiogenesis after Spinal Cord Injury
探讨 Ccn1 星形胶质细胞生态位在脊髓损伤后驱动血管生成的潜力
基本信息
- 批准号:10607960
- 负责人:
- 金额:$ 4.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesionsAstrocytesAutomobile DrivingAxonBehavioralBehavioral AssayBiological ProcessBlood - brain barrier anatomyBlood VesselsBlood flowBrainCell ProliferationCellsCentral Nervous SystemCharacteristicsComplementDataData SetDevelopmentDimensionsDistalDrynessEndothelial CellsEndotheliumEnvironmentEvaluationEvolutionFamily memberGene ExpressionGenesGenetic TranscriptionGoalsHealthHistologicHistologyHomeostasisHybridsHypoxiaITGB3 geneIn VitroInjuryIntegrinsIschemiaKnockout MiceLateralLesionLifeLigationLinkLiteratureLocationLocomotor RecoveryMaintenanceMediatingMethodsModelingMolecularMolecular EvolutionMorphologyMusNervous System PhysiologyNeuronsParalysedPathologyPericytesPersonsPhenotypePhysiologicalPositioning AttributeProcessProliferatingRecoveryRecovery of FunctionRegenerative capacityRegulationResearchResearch PersonnelResearch TrainingResourcesRoleSignal TransductionSiteSpecific qualifier valueSpinalSpinal CordSpinal cord injuryStrokeTechnologyTestingTherapeuticTissuesTrainingTransgenic MiceUp-RegulationUrinationVascular remodelingVertebral columnWalkingWorkangiogenesisaxon regenerationaxonal sproutingblood-brain barrier functioncareercentral nervous system injuryconditional knockoutdaily functioningdesigngrasphigh dimensionalityin silicoin vivoinnovationloss of functionmotor recoverymouse modelnervous system disordernotch proteinnovelnovel therapeuticspermissivenessprogramsregeneration potentialregenerativerestorationspatiotemporaltimelinetranscriptomicstranslational neurosciencewhite matter
项目摘要
ABSTRACT
Spinal Cord Injury (SCI) is a devastating neurological disorder, characterized by disruption to ascending and
descending axonal networks, that can leave people paralyzed for life. After SCI, axons in spared white matter
(WM) regions attempt to undergo short-range sprouting to restore normal neurological function. However,
neuron-extrinsic factors that govern this short-range axon sprouting remain poorly understood. During
development and after injury, new axons spatiotemporally follow new blood vessels, hence intimately linking
axon sprouting to vasculature. Central Nervous System (CNS) vasculature is orchestrated by astrocytes, which
physically interact with endothelia and pericytes to form the gliovascular unit- a tissue niche with indispensable
roles in modulating blood flow and Blood Brain Barrier (BBB) maintenance. Astrocytes are also chief responders
to any CNS insult and undergo highly context dependent changes in morphology, gene expression, and function
in a process collectively referred to as “astrocyte reactivity”. Recent work in stroke and hypoxia have uncovered
necessary roles for reactive astrocytes in restorative angiogenesis, but specific astrocyte-secreted molecules
mediating these effects remain an outstanding question. I have recently identified a novel, spatially restricted
subpopulation of reactive astrocytes defined by persistent upregulation of the powerful pro-angiogenic molecule
CCN Family Member 1(CCN1). In my proposal I will utilize two independent, yet complimentary, aims to test the
hypothesis that Ccn1+ astrocytes demarcate an evolving pro-angiogenic tissue niche, that promotes functional
recovery after SCI by directly governing endothelial cell phenotype including cell proliferation, maturation, or
Notch signaling. In Aim 1 I will analyze a first of its kind longitudinal Spatial Transcriptomics dataset of spared
tissue regions in a mouse hemisection model of SCI (mhSCI) to A) interrogate the molecular evolution of
intraspinal tissue niches harboring Ccn1+ astrocytes, and B) establish a powerful resource for the SCI field. From
this aim I will understand the unique molecular features of Ccn1+ astrocyte niches and computationally infer the
evolution of associated biological processes, signaling cascades, and transcriptional regulators. In Aim 2 I will
complement the computational data from Aim 1 by utilizing a newly generated astrocyte specific CCN1 knockout
mouse for A) behavioral assays of locomotor recovery and B) histological assessment of endothelial cell
phenotype after mhSCI. From this aim I will interrogate the therapeutic potential of CCN1 for SCI and the direct
effect it has on endothelial cell specification. Taken together, this study will uncover the angiogenic potential of
tissue niches harboring Ccn1+ astrocytes and start to provide a glimpse into a potential mechanism of action.
Such findings may have important implications in the development of new therapeutics that are aimed at
providing a more permissive environment for regenerative axon sprouting after SCI.
抽象的
脊髓损伤 (SCI) 是一种毁灭性的神经系统疾病,其特征是上行和上行神经功能受到破坏。
脊髓损伤后,白质中的轴突会幸免于难,导致患者终生瘫痪。
(WM)区域尝试进行短程发芽以恢复正常的神经功能。
控制这种短程轴突萌发的神经元外在因素仍然知之甚少。
发育和受伤后,新的轴突在时空上跟随新的血管,因此紧密连接
轴突发芽到脉管系统是由星形胶质细胞精心策划的。
与内皮细胞和周细胞发生物理相互作用,形成胶质血管单元——一个具有不可或缺的组织生态位
星形胶质细胞在调节血流和维持血脑屏障(BBB)方面的作用也是主要的反应者。
任何中枢神经系统损伤,并在形态、基因表达和功能方面经历高度依赖的变化
最近在中风和缺氧方面的研究发现了一个统称为“星形胶质细胞反应性”的过程。
反应性星形胶质细胞在恢复性血管生成中的必要作用,但特定的星形胶质细胞分泌分子
调节这些影响仍然是一个悬而未决的问题,我最近发现了一个新颖的、空间受限的问题。
由强大的促血管生成分子持续上调定义的反应性星形胶质细胞亚群
CCN 家庭成员 1(CCN1)。在我的提案中,我将利用两个独立但互补的目标来测试
假设 Ccn1+ 星形胶质细胞划定一个不断进化的促血管生成组织生态位,促进功能性
通过直接控制内皮细胞表型(包括细胞增殖、成熟或
在目标 1 中,我将分析第一个纵向空间转录组学数据集。
SCI (mhSCI) 小鼠半切片模型中的组织区域 A) 探究 SCI 的分子进化
脊髓内组织微环境中含有 Ccn1+ 星形胶质细胞,B) 为 SCI 领域建立了强大的资源。
为了这个目标,我将了解 Ccn1+ 星形胶质细胞生态位的独特分子特征,并通过计算推断
在目标 2 中,我将研究相关生物过程、信号级联和转录调节因子的进化。
利用新生成的星形胶质细胞特异性 CCN1 敲除来补充 Aim 1 的计算数据
小鼠 A) 运动恢复的行为测定和 B) 内皮细胞的组织学评估
mhSCI 后的表型 我将探讨 CCN1 对 SCI 的治疗潜力及其直接作用。
总而言之,这项研究将揭示其对内皮细胞规范的影响。
含有 Ccn1+ 星形胶质细胞的组织壁龛,开始让我们了解潜在的作用机制。
这些发现可能对开发针对以下疾病的新疗法具有重要意义:
为 SCI 后再生轴突萌发提供更宽松的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keshav Balaji Suresh其他文献
Keshav Balaji Suresh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
- 批准号:82371641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
- 批准号:82360298
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
How does neuronal contact mediate astrocyte transcriptional maturation?
神经元接触如何介导星形胶质细胞转录成熟?
- 批准号:
10748163 - 财政年份:2023
- 资助金额:
$ 4.04万 - 项目类别:
ST6GalNAc-I/MUC5AC promoting angiogenesis in lung adenocarcinoma
ST6GalNAc-I/MUC5AC促进肺腺癌血管生成
- 批准号:
10513140 - 财政年份:2022
- 资助金额:
$ 4.04万 - 项目类别:
ST6GalNAc-I/MUC5AC promoting angiogenesis in lung adenocarcinoma
ST6GalNAc-I/MUC5AC促进肺腺癌血管生成
- 批准号:
10670397 - 财政年份:2022
- 资助金额:
$ 4.04万 - 项目类别:
Blood Brain Barrier Disruption during Chimeric Antigen Receptor (CAR) T cell therapy
嵌合抗原受体 (CAR) T 细胞治疗期间的血脑屏障破坏
- 批准号:
10480869 - 财政年份:2020
- 资助金额:
$ 4.04万 - 项目类别: