The role of acetylcholine signaling in the axonal wiring of cortical interneurons
乙酰胆碱信号在皮质中间神经元轴突布线中的作用
基本信息
- 批准号:10578784
- 负责人:
- 金额:$ 19.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAction PotentialsAddressAdultAttention deficit hyperactivity disorderAxonBrainBrain DiseasesBrain PathologyCRISPR/Cas technologyCalcium ChannelCellsCholinergic ReceptorsDataDefectDevelopmentDiseaseElectroporationEpilepsyEquilibriumEventExhibitsFilopodiaGene DosageGene TransferGenerationsGenesGerm LinesGoalsIndividualInterneuronsKnockout MiceLinkMediatingMental DepressionModelingMolecularMorphogenesisMorphologyMusMutationNeuronsNeurotransmittersNicotinePhenotypeProductionRoleSchizophreniaSeriesShapesSignal PathwaySignal TransductionSignaling MoleculeSystemT-Type Calcium ChannelsTestingTransplantationVaricosityVertebral columnViral Genesbasal forebraincholinergiccholinergic neuroncognitive functionexperimental studygain of functiongain of function mutationgenome editinghippocampal pyramidal neuronin vivoloss of functionloss of function mutationmalformationmouse geneticsmutantneuralnovelpostnatalpreventstereotypytransmission process
项目摘要
Project Summary/Abstract
The cholinergic system, using acetylcholine (ACh) as a neurotransmitter, shapes plasticity and cognitive
functions in the adult cortex by tuning cortical activity, and has been implicated in brain disorders such as epilepsy,
attention-deficit hyperactivity disorder, depression, and schizophrenia. However, the role of ACh signaling in
development of cortical circuits in normal and diseased conditions remains poorly understood. In particular, little
is known about whether and how ACh signaling regulates the wiring of inhibitory interneurons (INs), cellular
components critical for cortical computations. Cortical INs generally develop highly branched axons to establish
local, dense circuit modules. Despite representing a crucial event during the wiring of IN circuits, the cellular and
molecular mechanisms underlying IN axonal arborization remain elusive.
The objective of our proposal is to establish the role of ACh signaling in shaping IN axonal arbors
in vivo. We will also provide evidence that disease-relevant mutations in genes that are essential for ACh
signaling could impact IN axonal branching, and that the axonal phenotype could be ameliorated by
manipulating downstream components in ACh signaling. To achieve this goal, we will perform a series of
experiments using the chandelier cell (ChC), which exclusively innervates axon initial segments of pyramidal
neurons (PNs) and thus powerfully controls spike generation in PNs.
Because of its stereotypy of the axonal organization, the ChC serves as an ideal model to study IN axonal
morphogenesis. Our preliminary data has shown that (1) Axonal filopodia arising from varicosities serve as
precursors of branches in vivo, (2) Filopodia initiation as well as the basal Ca2+ levels in ChC axonal varicosities
are regulated by signaling from nicotinic AChRs (nAChRs) to T-type voltage dependent calcium channels (T-
VDCCs), independently of action potentials/network activity, (3) CRISPR/Cas9-mediated T-VDCC loss-of-
function (LOF) in single ChCs significantly reduces their axonal branching points, and (4) Systemic nicotine
administration to developing postnatal mice increases ChC axonal arbors. Based on these results, we propose
to test the hypothesis that the nAChR-T-VDCC signaling pathway shapes ChC axonal arborization, and disease-
relevant mutations in ACh signaling molecules cause wiring defects in ChCs. In Aim 1, we will elucidate the role
of the nAChR-T-VDCC signaling pathway in ChC axonal arborization in vivo. In Aim 2, we will determine the
effect of the epilepsy-related gain-of-function (GOF) mutation in nAChRs on ChC axonal arborization, and
elucidate whether manipulating T-VDCCs can be a way to revert the nAChR GOF phenotype.
Our study will provide first evidence for the developmental role of ACh signaling in the wiring of INs in the
normal and diseased cortices as well as a novel hint for developing strategies to prevent and ameliorate brain
disorders associated with ACh signaling.
项目概要/摘要
胆碱能系统使用乙酰胆碱 (ACh) 作为神经递质,塑造可塑性和认知能力
通过调节皮质活动在成人皮质中发挥作用,并与癫痫等脑部疾病有关
注意力缺陷多动障碍、抑郁症和精神分裂症。然而,ACh 信号传导在
正常和患病条件下皮质回路的发育仍知之甚少。特别是,很少
已知 ACh 信号传导是否以及如何调节抑制性中间神经元 (IN)、细胞
对于皮质计算至关重要的组件。皮质 IN 通常会发育出高度分支的轴突来建立
局部、密集的电路模块。尽管在 IN 电路布线过程中代表了一个关键事件,但蜂窝和
IN 轴突树枝化的分子机制仍然难以捉摸。
我们提案的目标是确定 ACh 信号传导在塑造 IN 轴突乔木中的作用
体内。我们还将提供证据证明 ACh 所必需的基因中与疾病相关的突变
信号传导可能影响 IN 轴突分支,并且轴突表型可以通过以下方式改善
操纵 ACh 信号传导中的下游组件。为了实现这一目标,我们将进行一系列的工作
使用枝形吊灯细胞(ChC)进行的实验,该细胞专门支配锥体轴突的初始部分
神经元(PN),从而有力地控制 PN 中尖峰的产生。
由于其轴突组织的刻板印象,ChC 成为研究 IN 轴突的理想模型
形态发生。我们的初步数据表明,(1)由静脉曲张引起的轴突丝状伪足充当
体内分支的前体,(2) 丝状伪足起始以及 ChC 轴突静脉曲张中的基础 Ca2+ 水平
受烟碱乙酰胆碱受体 (nAChR) 至 T 型电压依赖性钙通道 (T-
VDCC),独立于动作电位/网络活动,(3)CRISPR/Cas9介导的T-VDCC丢失-
单个 ChC 中的功能(LOF)显着减少其轴突分支点,以及(4)全身尼古丁
对发育中的出生后小鼠进行给药会增加 ChC 轴突乔木。根据这些结果,我们建议
检验 nAChR-T-VDCC 信号通路塑造 ChC 轴突树枝化和疾病的假设
ACh 信号分子的相关突变会导致 ChC 中的线路缺陷。在目标 1 中,我们将阐明角色
体内 ChC 轴突分枝中 nAChR-T-VDCC 信号通路的研究。在目标 2 中,我们将确定
nAChRs 中癫痫相关的功能获得(GOF)突变对 ChC 轴突树枝化的影响,以及
阐明操纵 T-VDCC 是否可以成为恢复 nAChR GOF 表型的一种方法。
我们的研究将为ACh信号传导在INs布线中的发育作用提供第一个证据。
正常和患病的皮质以及制定预防和改善大脑策略的新提示
与 ACh 信号传导相关的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIROKI TANIGUCHI其他文献
HIROKI TANIGUCHI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIROKI TANIGUCHI', 18)}}的其他基金
Wiring and developmental principles of inhibitory neocortical circuits
抑制性新皮质回路的布线和发育原理
- 批准号:
10478363 - 财政年份:2022
- 资助金额:
$ 19.69万 - 项目类别:
The role of acetylcholine signaling in the axonal wiring of cortical interneurons
乙酰胆碱信号在皮质中间神经元轴突布线中的作用
- 批准号:
10372840 - 财政年份:2022
- 资助金额:
$ 19.69万 - 项目类别:
Molecular mechanisms underlying cortical interneuron synaptic specificity
皮质中间神经元突触特异性的分子机制
- 批准号:
10523360 - 财政年份:2021
- 资助金额:
$ 19.69万 - 项目类别:
Molecular mechanisms underlying cortical interneuron synaptic specificity
皮质中间神经元突触特异性的分子机制
- 批准号:
10096397 - 财政年份:2021
- 资助金额:
$ 19.69万 - 项目类别:
Molecular mechanisms underlying cortical interneuron synaptic specificity
皮质中间神经元突触特异性的分子机制
- 批准号:
10558671 - 财政年份:2021
- 资助金额:
$ 19.69万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
相似海外基金
Peptibodies As Novel Therapies in Atrial Fibrillation
肽体作为心房颤动的新疗法
- 批准号:
10598711 - 财政年份:2023
- 资助金额:
$ 19.69万 - 项目类别:
The role of acetylcholine signaling in the axonal wiring of cortical interneurons
乙酰胆碱信号在皮质中间神经元轴突布线中的作用
- 批准号:
10372840 - 财政年份:2022
- 资助金额:
$ 19.69万 - 项目类别:
Autonomic remodeling and modulation as mechanism and therapy for sudden cardiac death in heart failure
自主神经重塑和调节作为心力衰竭心源性猝死的机制和治疗
- 批准号:
10319909 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别:
Interrogating the cholinergic basis of opioid use disorder
探究阿片类药物使用障碍的胆碱能基础
- 批准号:
10839681 - 财政年份:2020
- 资助金额:
$ 19.69万 - 项目类别: