Regenerative Immunotherapy using light triggered in vivo activation of adhesive peptides
使用光触发体内粘附肽激活的再生免疫疗法
基本信息
- 批准号:10252435
- 负责人:
- 金额:$ 42.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-10 至 2022-09-11
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdhesivesAdultBiocompatible MaterialsCell AdhesionCellsChildChildhoodCicatrixCleft PalateClinicalCutaneousDataDefectDentistryDorsal Skinfold Window Chamber ModelEatingEnvironmentEpithelialEpitheliumEstersExcisionExposure toExtracellular MatrixFibrosisFistulaFlow CytometryFrequenciesFutureGoalsGrowthHomeostasisHydrogelsImmuneImmune responseImmune signalingImmunohistochemistryImmunotherapyImpaired wound healingIn SituIncidenceInflammation MediatorsInflammatoryInjuryKineticsLasersLeftLigandsLightLiteratureLive BirthMaleimidesModelingMononuclearMusNatural regenerationNoseOperative Surgical ProceduresOralOral Surgical ProceduresOral cavityPalatePaperPatientsPatternPeptidesPeriodicityPhagocytesPharmaceutical PreparationsPhenotypePlant ResinsPopulationProcessProductionRANTESRGD (sequence)Repeat SurgeryReportingResearchResponse to stimulus physiologySignal TransductionSkinSkin wound healingSpeechSpeedStimulusSystemTNF geneTestingTimeTissuesTumor-infiltrating immune cellsVascularizationcell motilityclinical encountercongenital anomalycraniofacialethylene glycolexperimental studyfeedinghealingimmunoregulationimprovedin vivoinnate immune functioninnovationintravital microscopyloss of functionmacrophagemonocytemouse modelnanofiberneovascularizationnew technologynovelpalate repairpre-clinicalpreventprogenitorreceptorrecruitregenerativerepairedresponsesingle-cell RNA sequencingskin woundsuccesstissue regenerationtissue repairwoundwound healing
项目摘要
Oronasal fistulas (ONF) following cleft palate repair remain a challenging problem that is frequently encountered clinically.
Preclinical evidence from our lab and multiple literature reports show that immune response, including monocyte
recruitment, is dysregulated in ONF, leading to a non-healing environment with scarring and a large fistula. This is a major
problem in the pediatric population which causes trouble talking and eating and requires repeat surgeries in these children
who are then still left with permanent defects. Prior research shows that non-classical monocytes are biased progenitors of
pro-angiogenic, anti-fibrotic macrophages within excisional skin and oral cavity wounds, and that they function within the
injury niche to enhance microvascular network expansion. This proposal seeks to develop new degradable poly(ethylene
glycol)-maleimide (PEG) hydrogels that are functionalized with photoactivatable caged RGD peptide. Preliminary data
shows that regulating the timing of immune cell adhesion in cutaneous tissues enhances regeneration. These findings suggest
that light triggering of stimulus-responsive hydrogel biomaterials is a potent new technology for initiating pro-regenerative
immune signaling. Because of the widespread potential application of light-initiated biomaterial responses in the oral cavity
(e.g. light-cured resin), this proposal will investigate whether local, time-regulated presentation of RGD in an oral cavity
repair model can prevent complications during oral cavity wound healing, similar to those observed following cleft palate
repair. The overarching hypothesis of these studies is that temporal control of light-triggered RGD presentation during oral
cavity wound healing will increase the adhesion of non-classical monocytes and enhance their pro-regenerative
contributions associated with vascularization, tissue remodeling and regeneration. This hypothesis will be addressed in the
following specific aims: Aim 1: To investigate the effects of spatial patterning and gradient presentation of light-triggered
RGD peptides in vivo on the recruitment of pro-regenerative monocyte / macrophage subsets. This aim will employ a dorsal
skinfold window chamber model for repetitive, non-invasive intravital microscopy analysis of monocyte recruitment
kinetics in situ after light-triggering. Aim 2: To investigate how time-regulated presentation of RGD from PEG hydrogels
influences pro-regenerative monocyte / macrophage subset recruitment and vascularization in a murine cleft palate repair
model. This aim will investigate immune infiltration and repair mechanisms in palatal wounds and will determine how the
time-regulated presentation of adhesive ligands from PEG hydrogels influences wound repair. This aim will also include
novel enhancement-of-function experiments using FTY720 delivery to increase pro-regenerative Ly6clo monocyte
accumulation. These experiments will determine whether light-triggering the exposure of RGD combined with increased
tissue accumulation of reparative immune cells will improve healing in post-surgical palatal defects. These innovative
studies will establish how stimulus response hydrogel materials can be used alone or in combination with immune
modulatory treatments in the oral cavity to enhance wound healing. Success of this proposal will also demonstrate how
clinically available drugs such as FTY720 can be re-purposed to locally target endogenous repair cells in the host as a novel
form of regenerative immunotherapy.
腭裂修复术后的口鼻瘘(ONF)仍然是临床上经常遇到的一个具有挑战性的问题。
我们实验室的临床前证据和多个文献报告表明,免疫反应,包括单核细胞
ONF 中的募集失调,导致形成疤痕和大瘘管的不愈合环境。这是一个重大
儿科人群的问题,导致这些儿童说话和进食困难,需要重复手术
然后他们仍然留下永久性的缺陷。先前的研究表明,非经典单核细胞是
切除皮肤和口腔伤口内的促血管生成、抗纤维化巨噬细胞,并且它们在
损伤生态位增强微血管网络扩张。该提案旨在开发新型可降解聚乙烯
乙二醇)-马来酰亚胺(PEG)水凝胶,用可光激活的笼状 RGD 肽进行功能化。初步数据
研究表明,调节皮肤组织中免疫细胞粘附的时间可以增强再生。这些发现表明
刺激响应水凝胶生物材料的光触发是启动促再生的有效新技术
免疫信号传导。由于光引发生物材料反应在口腔中的广泛潜在应用
(例如光固化树脂),该提案将研究口腔中局部的、时间调节的 RGD 表现
修复模型可以预防口腔伤口愈合过程中的并发症,类似于腭裂后观察到的并发症
维修。这些研究的总体假设是,口腔中光触发的 RGD 呈现的时间控制
空洞伤口愈合会增加非经典单核细胞的粘附并增强其促再生能力
与血管化、组织重塑和再生相关的贡献。这一假设将在
以下具体目标: 目标 1:研究光触发的空间图案和梯度呈现的影响
RGD 肽在体内对促再生单核细胞/巨噬细胞亚群的募集作用。这个目标将采用背侧
用于单核细胞募集重复、非侵入性活体显微镜分析的皮褶窗室模型
光触发后的原位动力学。目标 2:研究 PEG 水凝胶如何随时间调节 RGD 的呈现
影响小鼠腭裂修复中促再生单核细胞/巨噬细胞亚群的募集和血管化
模型。该目标将研究腭部伤口的免疫浸润和修复机制,并确定如何
PEG 水凝胶中粘附配体的时间调节呈现影响伤口修复。这一目标还将包括
使用 FTY720 递送来增加促再生 Ly6clo 单核细胞的新型功能增强实验
积累。这些实验将确定光触发 RGD 的曝光是否与增加的
修复性免疫细胞的组织积累将改善术后腭部缺损的愈合。这些创新的
研究将确定刺激反应水凝胶材料如何单独使用或与免疫结合使用
口腔调节治疗可促进伤口愈合。该提案的成功还将展示如何
临床上可用的药物(如 FTY720)可以重新用于局部靶向宿主内源性修复细胞,作为一种新型药物
再生免疫疗法的形式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward A. Botchwey其他文献
Edward A. Botchwey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward A. Botchwey', 18)}}的其他基金
T32 CTEng (Cellular and Tissue Engineering) Training Program
T32 CTEng(细胞和组织工程)培训计划
- 批准号:
10420388 - 财政年份:2022
- 资助金额:
$ 42.99万 - 项目类别:
T32 CTEng (Cellular and Tissue Engineering) Training Program
T32 CTEng(细胞和组织工程)培训计划
- 批准号:
10641891 - 财政年份:2022
- 资助金额:
$ 42.99万 - 项目类别:
Artery biomechanics and vascular damage in sickle cell disease
镰状细胞病的动脉生物力学和血管损伤
- 批准号:
10606485 - 财政年份:2021
- 资助金额:
$ 42.99万 - 项目类别:
Artery biomechanics and vascular damage in sickle cell disease
镰状细胞病的动脉生物力学和血管损伤
- 批准号:
10390381 - 财政年份:2021
- 资助金额:
$ 42.99万 - 项目类别:
Immune Modulatory Nanofibers for Skeletal Muscle Reconstruction
用于骨骼肌重建的免疫调节纳米纤维
- 批准号:
9565183 - 财政年份:2017
- 资助金额:
$ 42.99万 - 项目类别:
2015 Biomaterials & Tissue Engineering Gordon Research Conference and Gordon Research Seminar
2015年生物材料
- 批准号:
8986494 - 财政年份:2015
- 资助金额:
$ 42.99万 - 项目类别:
Phospholipid Growth Factors for Therapeutic Arteriogenesis and Tissue Engineering
用于治疗性动脉生成和组织工程的磷脂生长因子
- 批准号:
8103037 - 财政年份:2009
- 资助金额:
$ 42.99万 - 项目类别:
Therapeutic S1P Drug Targets for Cranial Bone Repair
颅骨修复的治疗性 S1P 药物靶点
- 批准号:
8268316 - 财政年份:2009
- 资助金额:
$ 42.99万 - 项目类别:
Phospholipid Growth Factors for Therapeutic Arteriogenesis and Tissue Engineering
用于治疗性动脉生成和组织工程的磷脂生长因子
- 批准号:
7880863 - 财政年份:2009
- 资助金额:
$ 42.99万 - 项目类别:
Phospholipid Growth Factors for Therapeutic Arteriogenesis and Tissue Engineering
用于治疗性动脉生成和组织工程的磷脂生长因子
- 批准号:
7741812 - 财政年份:2009
- 资助金额:
$ 42.99万 - 项目类别:
相似国自然基金
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
- 批准号:82360298
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
- 批准号:82371641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SPP1+M2巨噬细胞促进宫腔粘连内膜纤维化的机制和干预研究
- 批准号:82371636
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
相似海外基金
The Role of Layilin as a Novel Regulator of Platelet Activation and Thromboinflammation
Layilin 作为血小板活化和血栓炎症的新型调节剂的作用
- 批准号:
10638243 - 财政年份:2023
- 资助金额:
$ 42.99万 - 项目类别:
Atraumatic Non-fibrotic Epicardial Pacing with E-Bioadhesive Devices
使用电子生物粘附装置进行无创伤性非纤维化心外膜起搏
- 批准号:
10637562 - 财政年份:2023
- 资助金额:
$ 42.99万 - 项目类别:
Multi-modality optical imaging of single-cell dynamics using supercontinuum light source
使用超连续谱光源的单细胞动力学多模态光学成像
- 批准号:
10798646 - 财政年份:2023
- 资助金额:
$ 42.99万 - 项目类别:
Regulation of Adherent Cell Proliferation by Matrix Viscoelasticity
基质粘弹性对贴壁细胞增殖的调节
- 批准号:
10735701 - 财政年份:2023
- 资助金额:
$ 42.99万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 42.99万 - 项目类别: