Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
基本信息
- 批准号:10668030
- 负责人:
- 金额:$ 20.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcidsAddressAdhesionsAdhesivesAntimicrobial ResistanceBacteriaBacterial AdhesionBariumBindingBiocompatible MaterialsBite ForceCandida albicansCellsCharacteristicsClinicalComposite Dental ResinDataDentalDental cariesDevelopmentElectric StimulationElectron TransportElectrostaticsEnvironmentExhibitsFailureFluorescenceFutureGoalsHistologicHomeostasisHumanHydrophobicityImpairmentIn VitroIncubatedIndividualInfectionLong-Term EffectsMasticationMeasuresMethodologyMicrobeMicrobial BiofilmsMicrofluidicsModalityModelingMotionOralOral cavityOutcomePerformancePopulationPrevention strategyPropertyRisk ReductionRodentRodent ModelStreptococcus gordoniiStreptococcus mutansSurfaceSurface PropertiesSystemTestingThickTooth TissueTooth structureToothbrushingWorkbactericidebiomaterial compatibilityclinical applicationclinically relevantcost comparisoncytotoxicitydesignefficacy evaluationelectrical potentialelectrical propertyexperimental studyfunctional restorationfungusin vivoin vivo Modelinnovationmathematical modelmechanical forcemechanical propertiesmetallicitymicrobialmicrobial colonizationmicrobiotamicroleakagemicroorganismnanocompositenanoparticlenoveloral microbial communitypathogenic bacteriapolymicrobial biofilmpreventreal-time imagesresponserestorationrestorative materialzeta potential
项目摘要
Dental resin composites have been widely used clinically due to their bonding potential to the tooth tissues, good
mechanical properties, and lower cost compared to other indirect restorations. While successful, long-term
survival of a restoration can be compromised by secondary caries at the tooth-composite margins. In most cases,
failure is due to the microleakage of bacteria and their acid by-products through the margins between composite
and tooth structures. Once biofilms are established on a surface, it is extremely difficult to remove or kill
pathogenic bacteria therein. Therefore, inhibition of microbial adhesion or inactivation of the adhered bacteria
could impair their development into biofilms. The goal of this application is to create a novel dental composite
that inhibits biofilm accumulation as well as dislodging surface-adhered microbes on restorative materials using
enhanced electric potential at the interface generated by oral motion without relying on microbial killing activity.
A nanocomposite platform based on barium titanate (BaTiO3) nanoparticles enables antibiofilm and self-powering
functionalities for biomedical applications. This nanocomposite surface inhibits bacterial colonization by utilizing
its intrinsic physicochemical properties without bactericidal activity, thereby minimizing the induction of
antimicrobial resistance and destruction of homeostasis microbiota. In addition, the piezoelectric property of
BaTiO3 nanoparticles that converts normal oral motions into electrical energy can be utilized to enhance its
antibiofilm activity. Ongoing studies indicate that antibiofilm activity can be further enhanced by modulating the
work function by introducing a shallow metallic surface (< 100 Å) on the nanocomposite, exhibiting almost
complete inhibition of bacterial colonization. Based on this exciting supporting data, we hypothesize that force-
powering of piezoelectric crystals to produce enhanced electric potential combined with bacterial anti-adhesive
property creates an anti-infectious environment that prevents the development of biofilms on restorations and
secondary caries. We anticipate that the creation of this anti-infectious smart biomaterial would increase the
functionality of restorations and provide a new strategy to prevent secondary caries as well as reduce the risk of
restoration failure.
牙科树脂复合材料由于其与牙齿组织的粘接潜力、良好的粘接性能而在临床上得到了广泛的应用。
与其他间接修复相比,机械性能更高,成本更低,同时成功且长期。
在大多数情况下,修复体的存活可能会因牙齿复合材料边缘的继发龋而受到影响。
失效是由于细菌及其酸副产物通过复合材料之间的边缘微泄漏造成的。
一旦生物膜在表面形成,就很难去除或杀死。
因此,抑制微生物的附着或使附着的细菌失活。
可能会损害它们形成生物膜的能力。该应用的目标是创造一种新型牙科复合材料。
抑制生物膜积累并去除修复材料表面粘附的微生物
通过口腔运动产生的界面处增强的电势,而不依赖于微生物杀灭活性。
基于钛酸钡 (BaTiO3) 纳米粒子的纳米复合材料平台可实现抗生物膜和自供电
这种纳米复合材料表面利用生物医学应用的功能来抑制细菌定植。
其固有的理化特性没有杀菌活性,从而最大限度地减少了细菌的诱导
抗菌素耐药性和微生物群稳态的破坏此外,压电特性。
BaTiO3 纳米粒子可将正常口腔运动转化为电能,可用于增强口腔运动
正在进行的研究表明,可以通过调节抗生物膜活性来进一步增强。
通过在纳米复合材料上引入浅金属表面(< 100 Å)来实现功函数,几乎表现出
基于这个令人兴奋的支持数据,我们采取了这种力量-
压电晶体供电以产生增强的电势并结合细菌抗粘附剂
财产创造了一个抗感染环境,防止修复体和生物膜的形成
我们预计这种抗感染智能生物材料的创建将增加继发性龋齿的发生率。
修复体的功能,并提供预防继发龋和降低龋齿风险的新策略
恢复失败。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geelsu Hwang其他文献
Geelsu Hwang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geelsu Hwang', 18)}}的其他基金
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 20.78万 - 项目类别:
Enzymatic approach for targeting mannans/EPS to disrupt cross-kingdom cariog
靶向甘露聚糖/EPS 的酶法可破坏跨界 cariog
- 批准号:
10189551 - 财政年份:2018
- 资助金额:
$ 20.78万 - 项目类别:
Enzymatic approach for targeting mannans/EPS to disrupt cross-kingdom cariog
靶向甘露聚糖/EPS 的酶法可破坏跨界 cariog
- 批准号:
10436198 - 财政年份:2018
- 资助金额:
$ 20.78万 - 项目类别:
Role of GtfB on S.mutans-C.albicans interactions and cariogenic biofilm formation
GTfB 在 S.mutans-C.albicans 相互作用和致龋生物膜形成中的作用
- 批准号:
9016967 - 财政年份:2016
- 资助金额:
$ 20.78万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
- 批准号:
10659333 - 财政年份:2023
- 资助金额:
$ 20.78万 - 项目类别:
Sugar-coating our way to genetically modified mesenchymal stem cells: Glycocalyx-inspired cell culture substrates that prime mesenchymal stem cells for polycation-mediated pDNA delivery.
糖衣我们的转基因间充质干细胞之路:糖萼启发的细胞培养基质为间充质干细胞提供聚阳离子介导的 pDNA 传递。
- 批准号:
10647120 - 财政年份:2023
- 资助金额:
$ 20.78万 - 项目类别:
Siglecs in the Porcine Oviduct: Roles in the Sperm Reservoir and Sperm Immune Response
猪输卵管中的 Siglecs:在精子库和精子免疫反应中的作用
- 批准号:
10607761 - 财政年份:2023
- 资助金额:
$ 20.78万 - 项目类别:
Targeted prostanoid inhibition as an anti-inflammatory therapy for diabetic retinopathy
靶向前列腺素抑制作为糖尿病视网膜病变的抗炎治疗
- 批准号:
10751497 - 财政年份:2023
- 资助金额:
$ 20.78万 - 项目类别:
Extracellular Vesicle Therapy for Diabetic Retinopathy
细胞外囊泡治疗糖尿病视网膜病变
- 批准号:
10723000 - 财政年份:2023
- 资助金额:
$ 20.78万 - 项目类别: