Enzymatic approach for targeting mannans/EPS to disrupt cross-kingdom cariog
靶向甘露聚糖/EPS 的酶法可破坏跨界 cariog
基本信息
- 批准号:10189551
- 负责人:
- 金额:$ 34.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAffectAnabolismAntibioticsBindingBinding SitesBiochemicalBiologicalCandidaCandida albicansCaries preventionCell WallCellsChildClinicalCombined Modality TherapyCommunicable DiseasesComplementConsumptionDataDental EnamelDental cariesDevelopmentDevicesDigestionEnzymesEvaluationExhibitsFluconazoleFluorescence SpectroscopyFluoridesGenesGeneticGenetic DatabasesGlucosyltransferasesGoalsGoldImpairmentIn SituIn VitroInfectionLesionLigand BindingLinkMannansMannosidaseMechanicsMediatingMetabolicMethodsMicrobial BiofilmsMicrobiologyMouth DiseasesNational Institute of Dental and Craniofacial ResearchOral cavityPainPathogenicityPatientsPlayPopulationPovidone-IodineProcessProductionResolutionRodent ModelRoleSeveritiesSiteStreptococcus mutansSucroseSurfaceSystemTestingTherapeuticTherapeutic AgentsTimeToddlerTooth structureTopical applicationTreatment ProtocolsUnited States National Institutes of HealthVirulenceVirulentVisualizationanticariesantimicrobialbasebiophysical techniquesclinical applicationclinically relevantcostdemineralizationdental biofilmdosageearly childhoodefficacy evaluationexoenzymefungusin vivomicrobiomemicrobiotamutantnovel therapeutic interventionoral microbial communitypolymicrobial biofilmpreventreal-time imagessingle moleculespatiotemporalsugartooth surface
项目摘要
ABSTRACT
Microbiological studies reveal a direct association between early-childhood caries (ECC) and the presence of
Candida albicans, along with high levels of Streptococcus mutans in plaque-biofilms. Previous in vitro and in
vivo studies demonstrated that C. albicans and S. mutans develop a symbiotic relationship, enhancing the
severity of dental caries. This bacterial-fungal interaction is mediated by S. mutans exoenzymes termed
glucosyltransferases (Gtfs). The Gtfs binds avidly to the fungal surface and produces exopolysaccharides
(EPS) that promotes the development of cariogenic cross-kingdom biofilms. Our previous R03 supported
(DE025728) studies demonstrated that N- and O-linked mannans on the C. albicans cell wall play key roles in
this process. Mutant strains defective in mannans showed severely reduced GtfB binding (vs wild type), which
in turn impaired EPS production and abrogated mixed-species biofilm formation in vivo, revealing potential
antibioflm targets. Thus, we propose to further elucidate the mechanisms of GtfB binding/EPS production, and
assess whether an enzymatic strategy targeting the ligand-binding function could prevent cariogenic biofilm
development. We will use readily available α- (and β-) mannosidases for mannan degradation on Candida cell
wall and glucanohydrolases for EPS digestion in situ. We hypothesize that the enzyme combination therapy
will disrupt the GtfB binding sites on C. albicans surface and concomitantly digest the EPS produced by S.
mutans Gtfs, thereby blocking cross-kingdom biofilm formation and preventing the onset of severe caries in
vivo. To support our hypothesis, Aim 1 will characterize the Gtf binding-function mechanism using genetics
(mutant strains) and biochemical (enzymatic) approaches in conjunction with spectroscopy-fluorescence and
biophysical methods. Specifically, we will assess the impact of mannan-cleavage on Gtf binding/activity and
EPS production. In parallel, we will assess the optimal amounts and combinations of enzymes to disrupt C.
albicans-S. mutans interactions and biofilm formation. The efficacy of optimized dosages to biofilms will be
evaluated in Aim 2. Then, we will assess the disruption of biofilm development and cariogenicity on tooth-
enamel using our newly developed super-resolution confocal-surface topography system. Real-time dynamics
of cross-kingdom interaction, biofilm formation, in situ pH, metabolic activity, development of enamel lesions,
and biofilm detachment will be observed. In addition, we will test clinical isolates of S. mutans and C. albicans
from ECC-patients. The most effective dosage/combination of enzymes will be evaluated in vivo. In Aim 3, we
will determine antibiofilm and anticaries efficacy of the enzymatic therapy using a well-established rodent
model of ECC. We will investigate the impact of this therapeutic approach in preventing the onset and severity
of caries lesions. The influences on bacterial-fungal levels and plaque microbiome will be also assessed.
Successful completion of these aims will lead to a non-microbiocidal and antimicrobial independent approach
to reduce a prevalent and costly biofilm-induced oral disease that affect a vulnerable children population.
抽象的
微生物学研究揭示了儿童早期龋齿 (ECC) 与存在的直接关系
先前在体外和体内的斑块生物膜中存在白色念珠菌和高水平的变形链球菌。
体内研究表明,白色念珠菌和变形链球菌形成了共生关系,增强了
这种细菌-真菌相互作用是由称为变形链球菌外酶介导的。
葡萄糖基转移酶 (Gtfs) Gtfs 与真菌表面紧密结合并产生胞外多糖。
(EPS),促进致龋跨界生物膜的发展,我们之前的 R03 支持。
(DE025728) 研究表明,白色念珠菌细胞壁上的 N- 和 O- 连接甘露聚糖在
甘露聚糖缺陷的突变株表现出 GtfB 结合严重减少(与野生型相比)。
反过来,EPS 的产生受损并消除了体内混合物种生物膜的形成,揭示了潜在的潜力
因此,我们建议进一步阐明 GtfB 结合/EPS 产生的机制,以及
评估针对配体结合功能的酶策略是否可以预防致龋生物膜
我们将使用现成的 α-(和 β-)甘露糖苷酶在念珠菌细胞上降解甘露聚糖。
我们捕获了用于原位 EPS 消化的酶组合疗法。
将破坏白色念珠菌表面的 GTfB 结合位点,并同时消化白色念珠菌产生的 EPS。
mutans GTfs,阻断跨界生物膜形成并防止严重龋齿的发生
为了支持我们的假设,目标 1 将利用遗传学来表征 Gtf 结合功能机制。
(突变菌株)和生化(酶)方法与光谱荧光和
具体来说,我们将评估甘露聚糖切割对 Gtf 结合/活性的影响和
与此同时,我们将评估破坏 C. 的酶的最佳数量和组合。
白色念珠菌-变形链球菌相互作用和生物膜形成的优化剂量将是。
在目标 2 中进行评估。然后,我们将评估生物膜发育的破坏和牙齿的致龋性
使用我们新开发的超分辨率共焦表面形貌实时动力学系统进行牙釉质。
跨界相互作用、生物膜形成、原位 pH 值、代谢活动、牙釉质病变的发展、
此外,我们还将测试变形链球菌和白色念珠菌的临床分离株。
在目标 3 中,我们将在体内评估最有效的酶剂量/组合。
将使用成熟的啮齿动物来确定酶疗法的抗生物膜和防龋功效
我们将研究这种治疗方法对预防 ECC 发病和严重程度的影响。
还将评估对细菌-真菌水平和菌斑微生物群的影响。
成功完成这些目标将导致一种非杀菌和抗菌独立的方法
减少影响弱势儿童群体的普遍且昂贵的生物膜引起的口腔疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geelsu Hwang其他文献
Geelsu Hwang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geelsu Hwang', 18)}}的其他基金
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Enzymatic approach for targeting mannans/EPS to disrupt cross-kingdom cariog
靶向甘露聚糖/EPS 的酶法可破坏跨界 cariog
- 批准号:
10436198 - 财政年份:2018
- 资助金额:
$ 34.41万 - 项目类别:
Role of GtfB on S.mutans-C.albicans interactions and cariogenic biofilm formation
GTfB 在 S.mutans-C.albicans 相互作用和致龋生物膜形成中的作用
- 批准号:
9016967 - 财政年份:2016
- 资助金额:
$ 34.41万 - 项目类别:
相似国自然基金
多组学研究STAT3调控CKMT2和CD36-FABP4影响脂肪细胞参与乳腺癌细胞磷酸肌酸合成的耐药代谢重编程
- 批准号:82360604
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
METTL3通过m6A甲基化修饰NADK2调节脯氨酸代谢和胶原合成影响皮肤光老化的机制研究
- 批准号:82360625
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
须糖多孢菌EⅡGlc与pyk基因修饰对葡萄糖代谢的协同作用及其对丁烯基多杀菌素生物合成的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蜜蜂肠道菌Gilliamella通过调控不饱和脂肪酸合成代谢影响认知行为的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内源性应激状态、刻板行为及交互效应对奶牛机体代谢和乳合成的影响及其关联性研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
The role of hyaluronic acid and its receptors in the pathogenesis of endometriosis
透明质酸及其受体在子宫内膜异位症发病机制中的作用
- 批准号:
10894459 - 财政年份:2023
- 资助金额:
$ 34.41万 - 项目类别:
Redox Signaling in the Endoplasmic Reticulum Regulates Endothelial Surface N-glycoforms: implications for vascular inflammation
内质网中的氧化还原信号调节内皮表面 N-糖型:对血管炎症的影响
- 批准号:
10386275 - 财政年份:2022
- 资助金额:
$ 34.41万 - 项目类别:
Redox Signaling in the Endoplasmic Reticulum Regulates Endothelial Surface N-glycoforms: implications for vascular inflammation
内质网中的氧化还原信号调节内皮表面 N-糖型:对血管炎症的影响
- 批准号:
10794921 - 财政年份:2022
- 资助金额:
$ 34.41万 - 项目类别:
Protective effects of amlexanox against atherosclerosis
氨来呫诺对动脉粥样硬化的保护作用
- 批准号:
10362773 - 财政年份:2021
- 资助金额:
$ 34.41万 - 项目类别:
Protective effects of amlexanox against atherosclerosis
氨来呫诺对动脉粥样硬化的保护作用
- 批准号:
10400158 - 财政年份:2021
- 资助金额:
$ 34.41万 - 项目类别: