Functional mechanisms underlying Dystroglycan-dependent and independent roles of protein O-mannosylation in the nervous system
蛋白质 O-甘露糖基化在神经系统中依赖和独立作用的功能机制
基本信息
- 批准号:9384393
- 负责人:
- 金额:$ 31.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAfferent NeuronsAnimalsAreaAxonBiochemicalBioinformaticsBiologicalBiological ProcessBiologyBiomedical ResearchCellsClinical ResearchCommunicationComplexDataDefectDevelopmentDevelopmental BiologyDiagnosticDiseaseDrosophila genusDystroglycanEmbryoGenesGeneticGlycobiologyGlycoproteinsHereditary DiseaseHumanImaging TechniquesIn VitroInvestigationLightMediatingMediator of activation proteinMembrane ProteinsMethodsModelingModernizationModificationMolecularMolecular TargetMuscleMuscle ContractionMuscular DystrophiesNervous system structureNeurobiologyOrganismOutcomePathogenicityPathway interactionsPatternPhenotypePhysiologyPlayPolysaccharidesPost-Translational Protein ProcessingPostureProtein Tyrosine PhosphataseProteinsRegulationResearchRoleSeveritiesStructureTestingTherapeuticbasedystroglycanopathygenetic approachglycoproteomicsglycosylationhuman diseasein vivoinnovationmultidisciplinarymutantneuromuscularnovelnovel therapeuticsprotein functionreceptorreceptor function
项目摘要
The main objective of this project is to elucidate functional mechanisms underlying regulation of the
nervous system by protein O-mannosylation (POM). POM is an essential type of O-glycosylation that has a
profound effect on the development and physiology in a broad range of animals, from Drosophila to
humans. Although the spectrum of biological functions affected by POM is wide, so far the only well-studied
target of POM is Dystroglycan (Dg). Defects in POM modifications of Dg result in severe muscular
dystrophies called dystroglycanopathies. Pathomechanisms associated with POM defects are complex and
remain poorly understood, particularly in the nervous system. Recent studies suggested that POM
modification affects functions of many proteins, which contributes to pathogenic mechanisms of
dystroglycanopathies. However, functions of POM on proteins besides Dg are largely unknown. The
complexity of glycosylation and limitations of in vivo approaches create significant challenges for studying
POM in mammalian organisms. Here we propose a multidisciplinary project that uses advantages of
Drosophila model, including powerful arsenal of genetic approaches, simplified glycosylation and
experimental amenability of POM and Dg mutants, to elucidate molecular and cellular mechanisms of Dg-
dependent and Dg-independent functions of POM, with the focus on the nervous system and
neuromuscular development and physiology. Our preliminary studies suggested that Receptor Protein
Tyrosine Phosphatases (RPTPs) are functionally important POM targets and revealed that POM regulates
coordinated muscle contractions by affecting communication between sensory neurons and the CNS. We
will capitalize on these results while focusing on three specific aims: (1) To analyze the role of POM in
regulation of sensory neurons and coordinated muscle contractions. Using live imaging techniques
combined with genetic and neurobiological approaches, we will comprehensively investigate the role of
POM in communication between sensory neurons, CNS cells and muscles. (2) To investigate the effect of
POM on RPTP function. Using in vivo and in vitro approaches, we will investigate how POM affects
functions RPTPs at molecular, cellular, and organismal levels. (3) To reveal new molecular targets of POM
and elucidate their function in the nervous system. We will use glycoproteomic approaches to identify
proteins with POM modifications. We will analyze functions of POM on novel targets in vivo, focusing on
proteins that function in the nervous system. We anticipate that this project will establish new paradigms of
POM-mediated regulation of the nervous system and will elucidate new evolutionarily conserved, Dg-
dependent and independent mechanisms of POM functions, which will shed light on pathomechanisms of
human diseases associated with POM abnormalities.
该项目的主要目标是阐明监管的功能机制
蛋白质 O-甘露糖基化 (POM) 的神经系统。 POM 是一种重要的 O-糖基化类型,具有
对从果蝇到多种动物的发育和生理机能产生深远影响
人类。尽管 POM 影响的生物功能范围很广,但迄今为止唯一得到充分研究的
POM 的目标是肌营养不良聚糖 (Dg)。 Dg 的 POM 修饰缺陷会导致严重的肌肉损伤
营养不良称为肌营养不良病。与 POM 缺陷相关的病理机制非常复杂
人们对它的了解仍然知之甚少,特别是在神经系统中。最近的研究表明 POM
修饰会影响许多蛋白质的功能,从而导致致病机制
肌营养不良症。然而,POM 对除 Dg 之外的蛋白质的功能尚不清楚。这
糖基化的复杂性和体内方法的局限性给研究带来了重大挑战
哺乳动物体内的 POM。在这里,我们提出了一个利用以下优点的多学科项目:
果蝇模型,包括强大的遗传方法库、简化的糖基化和
POM 和 Dg 突变体的实验适应性,以阐明 Dg- 的分子和细胞机制
POM 的依赖和 Dg 独立功能,重点是神经系统和
神经肌肉发育和生理学。我们的初步研究表明受体蛋白
酪氨酸磷酸酶 (RPTP) 是功能上重要的 POM 靶标,并揭示 POM 调节
通过影响感觉神经元和中枢神经系统之间的通讯来协调肌肉收缩。我们
将利用这些结果,同时重点关注三个具体目标:(1)分析 POM 在
感觉神经元的调节和协调的肌肉收缩。使用实时成像技术
结合遗传学和神经生物学方法,我们将全面研究
POM 在感觉神经元、中枢神经系统细胞和肌肉之间的通讯。 (2) 考察效果
POM 上的 RPTP 功能。使用体内和体外方法,我们将研究 POM 如何影响
RPTP 在分子、细胞和有机体水平上发挥作用。 (3)揭示POM新分子靶点
并阐明它们在神经系统中的功能。我们将使用糖蛋白组学方法来鉴定
具有 POM 修饰的蛋白质。我们将分析 POM 对体内新靶标的功能,重点关注
在神经系统中发挥作用的蛋白质。我们预计该项目将建立新的范式
POM 介导的神经系统调节,并将阐明新的进化保守的 Dg-
POM 功能的依赖和独立机制,这将有助于阐明 POM 功能的病理机制
与 POM 异常相关的人类疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VLADISLAV M PANIN其他文献
VLADISLAV M PANIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VLADISLAV M PANIN', 18)}}的其他基金
The role of sialylation in glia-neuron communications and stress responses
唾液酸化在胶质神经元通讯和应激反应中的作用
- 批准号:
10928423 - 财政年份:2023
- 资助金额:
$ 31.31万 - 项目类别:
The role of sialylation in glia-neuron communications and stress responses
唾液酸化在胶质神经元通讯和应激反应中的作用
- 批准号:
10928423 - 财政年份:2023
- 资助金额:
$ 31.31万 - 项目类别:
Functional mechanisms underlying Dystroglycan-dependent and independent roles of protein O-mannosylation in the nervous system
蛋白质 O-甘露糖基化在神经系统中依赖和独立作用的功能机制
- 批准号:
10207792 - 财政年份:2017
- 资助金额:
$ 31.31万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8513429 - 财政年份:2011
- 资助金额:
$ 31.31万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8894325 - 财政年份:2011
- 资助金额:
$ 31.31万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8702249 - 财政年份:2011
- 资助金额:
$ 31.31万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8162799 - 财政年份:2011
- 资助金额:
$ 31.31万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8309155 - 财政年份:2011
- 资助金额:
$ 31.31万 - 项目类别:
Genetics and Biochemistry of Sialylation in Drosophila
果蝇唾液酸化的遗传学和生物化学
- 批准号:
7942241 - 财政年份:2009
- 资助金额:
$ 31.31万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 31.31万 - 项目类别:
The Injectrode- An injectable, easily removable electrode as a trial lead for baroreceptor activation therapy to treat hypertension and heart failure
Injectrode——一种可注射、易于拆卸的电极,作为压力感受器激活疗法的试验引线,以治疗高血压和心力衰竭
- 批准号:
10697600 - 财政年份:2023
- 资助金额:
$ 31.31万 - 项目类别:
Impact of PIP5K1 on extracellular vesicle biogenesis
PIP5K1 对细胞外囊泡生物发生的影响
- 批准号:
10666794 - 财政年份:2023
- 资助金额:
$ 31.31万 - 项目类别:
Genetic analysis of intrinsic sensory neuron function in the enteric neural circuits
肠神经回路中内在感觉神经元功能的遗传分析
- 批准号:
10568622 - 财政年份:2023
- 资助金额:
$ 31.31万 - 项目类别:
Perception of Dead Conspecifics modulates neural signaling and lifespan in Caenorhabditis elegans
对死亡同种的感知调节秀丽隐杆线虫的神经信号和寿命
- 批准号:
10828478 - 财政年份:2023
- 资助金额:
$ 31.31万 - 项目类别: