The benefits and harms of lung cancer screening in Florida

佛罗里达州肺癌筛查的好处和危害

基本信息

  • 批准号:
    10576300
  • 负责人:
  • 金额:
    $ 32.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Lung cancer is the leading cause of cancer related death in both men and women in the United States. Currently, approximately 70% of lung cancer patients are diagnosed at advanced stages, and the 5-year survival rate of advanced stage lung cancer is very low, at only 16%. Investigators have been searching for effective screening modalities for the early detection of lung cancer so that patients can receive curative treatments at an early stage. When the National Lung Screening Trial (NLST) demonstrated the effectiveness of using low-dose computed tomography (LDCT) scan for lung cancer screening (LCS), researchers and physicians hope to save lives from lung cancer by screening high-risk population who aged 55 to 77 years and have a 30 pack years making history or former smokes who have quitted within the past 15 years. Since the release of the landmark NLST results, many medical associations published guidelines to recommend LDCT-based screening for individuals at high risk for lung cancer and the Centers for Medicare and Medicaid Services (CMS) also decided to cover the LCS for Medicare beneficiaries who are at high risk for lung cancer. While many efforts have been made to accelerate the dissemination the beneficial LCS, the concerns over the high false positive rates (96.4% of the positive results), invasive diagnostic procedures, postprocedural complications and health care costs may hinder the utilization of lung cancer screening. This concern was magnified as researchers and policy makers started questioning whether the complication rate and false positives in real-world settings would be even higher than the rates reported in the NLST, which was conducted in a setting with well-established facilities and proficiency in cancer care. Therefore, we propose to understand the contemporary use of lung cancer screening and associated health care outcomes and costs using data from a real-world setting. Our study has three goals: 1) to develop an innovative computable phenotype algorithm to identify high-risk and low-risk individuals for LCS from both structured and unstructured (i.e., clinical notes) electronic health record (EHR) data and to develop advanced natural language processing (NLP) methods to extract LCS related clinical information from clinical notes such as radiology reports; 2) to determine the appropriate and inappropriate use of LDCT among high-risk and low-risk individuals in Florida and to examine the test results of LDCT, the rates of invasive diagnostic procedures, postprocedural complications, and incidental findings in real-world settings; and 3) to develop and validate a microsimulation model of the clinical courses of LCS incorporating the real-world data in LCS to estimate the long-term benefits and the cost-effectiveness of LCS. Our proposed study has the potential to reduce lung cancer incidence and mortality by informing policymakers and practitioners on the appropriateness of contemporary use of LCS. This knowledge will help both patients and physicians better understand the harm- benefit tradeoff of lung cancer screening and transform such knowledge into practice to prevent avoidable postprocedural complications.
项目摘要/摘要 肺癌是美国男性和女性癌症相关死亡的主要原因。现在, 在高级阶段诊断出约70%的肺癌患者,5年生存率为 晚期肺癌非常低,仅为16%。调查人员一直在寻找有效的筛查 早期发现肺癌的方式,以便患者可以在早期接受治疗治疗 阶段。当国家肺筛查试验(NLST)证明使用低剂量的有效性 用于肺癌筛查(LCS)的计算机断层扫描(LDCT)扫描,研究人员和医生希望保存 通过筛查55至77岁的高风险人口,并拥有30年的高风险人口,从肺癌中生活 在过去15年中戒烟的历史或以前的烟。自从地标发布以来 NLST结果,许多医学协会发布了指南,建议基于LDCT的筛查 肺癌高风险的人以及医疗保险和医疗补助服务中心(CMS)也决定 覆盖有肺癌高风险的Medicare受益人的LCS。虽然许多努力 为了加速传播有益的LC,对高误报利率的担忧(96.4%) 在积极的结果中),侵入性诊断程序,术后并发症和医疗保健费用可能 阻碍了肺癌筛查的利用。作为研究人员和政策制定者,这种担忧受到了扩大 开始质疑现实环境中的并发症率和假阳性是否会更高 比在NLST中报告的费率,该价格是在设施良好的环境中进行的 精通癌症护理。因此,我们建议了解当代使用肺癌筛查 以及使用来自现实世界中的数据的相关医疗保健结果和成本。我们的研究有三个目标: 1)开发一种创新的可计算表型算法,以识别LCS的高风险和低风险个体 从结构化和非结构化(即临床注释)电子健康记录(EHR)数据中均来自 从临床上提取LCS相关的临床信息的先进自然语言处理(NLP)方法 注释,例如放射学报告; 2)确定高风险中LDCT的适当和不适当使用 佛罗里达州的低风险个体并检查LDCT的测试结果,侵入性诊断率 在现实世界中的程序,术后并发症和偶然发现; 3)开发和 验证LCS临床课程的微仿真模型,该模型纳入LCS中的现实世界数据 估计LCS的长期收益和成本效益。我们提出的研究有可能 通过向政策制定者和从业者告知适当性,降低肺癌的发病率和死亡率 当代使用LCS。这些知识将帮助患者和医生更好地了解危害 - 利益肺癌筛查的权衡并将这种知识转化为实践,以防止可避免 术后并发症。

项目成果

期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A large language model for electronic health records.
  • DOI:
    10.1038/s41746-022-00742-2
  • 发表时间:
    2022-12-26
  • 期刊:
  • 影响因子:
    15.2
  • 作者:
  • 通讯作者:
Are Preregistration and Registered Reports Vulnerable to Hacking?
  • DOI:
    10.1097/ede.0000000000001162
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bian J;Min JS;Prosperi M;Wang M
  • 通讯作者:
    Wang M
An efficient and accurate distributed learning algorithm for modeling multi-site zero-inflated count outcomes.
  • DOI:
    10.1038/s41598-021-99078-2
  • 发表时间:
    2021-10-04
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Edmondson MJ;Luo C;Duan R;Maltenfort M;Chen Z;Locke K Jr;Shults J;Bian J;Ryan PB;Forrest CB;Chen Y
  • 通讯作者:
    Chen Y
Distributed Quasi-Poisson regression algorithm for modeling multi-site count outcomes in distributed data networks.
分布式拟泊松回归算法,用于对分布式数据网络中的多站点计数结果进行建模。
  • DOI:
    10.1016/j.jbi.2022.104097
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Edmondson,MackenzieJ;Luo,Chongliang;NazmulIslam,Md;Sheils,NatalieE;Buresh,John;Chen,Zhaoyi;Bian,Jiang;Chen,Yong
  • 通讯作者:
    Chen,Yong
A Natural Language Processing Tool to Extract Quantitative Smoking Status from Clinical Narratives.
一种从临床叙述中提取定量吸烟状态的自然语言处理工具。
共 22 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往

Jiang Bian的其他基金

ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
  • 批准号:
    10753675
    10753675
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
  • 批准号:
    10590413
    10590413
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
  • 批准号:
    10751275
    10751275
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
  • 批准号:
    10699171
    10699171
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
  • 批准号:
    10728800
    10728800
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
  • 批准号:
    10682237
    10682237
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
  • 批准号:
    10752848
    10752848
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
  • 批准号:
    10608470
    10608470
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
  • 批准号:
    10576853
    10576853
  • 财政年份:
    2022
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
  • 批准号:
    10392169
    10392169
  • 财政年份:
    2022
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:

相似国自然基金

采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
  • 批准号:
    32371047
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
  • 批准号:
    72303205
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
  • 批准号:
    12305261
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
  • 批准号:
    62301339
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
  • 批准号:
    72304103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Identification of blood biomarkers predictive of organ aging
鉴定预测器官衰老的血液生物标志物
  • 批准号:
    10777065
    10777065
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:
Augmenting Pharmacogenetics with Multi-Omics Data and Techniques to Predict Adverse Drug Reactions to NSAIDs
利用多组学数据和技术增强药物遗传学,预测 NSAID 的药物不良反应
  • 批准号:
    10748642
    10748642
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:
Signature Research Project
签名研究项目
  • 批准号:
    10577120
    10577120
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:
University of Iowa Institute for Clinical and Translational Science
爱荷华大学临床与转化科学研究所
  • 批准号:
    10622212
    10622212
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别:
Mentoring Across Disciplines: Aging and Infectious Diseases with a Focus on Mobility
跨学科指导:以流动性为重点的老龄化和传染病
  • 批准号:
    10757167
    10757167
  • 财政年份:
    2023
  • 资助金额:
    $ 32.7万
    $ 32.7万
  • 项目类别: