Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
基本信息
- 批准号:10576853
- 负责人:
- 金额:$ 77.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAffectAgingAlgorithmic SoftwareAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskAmericanBioinformaticsBiologicalBiologyCause of DeathCharacteristicsClinical MedicineClinical ResearchCohort StudiesCollectionCommunitiesComplexComputer softwareDataData ScienceData SourcesDevelopmentDoseElectronic Health RecordEvaluationFailureFormulationFunctional disorderFutureGenerationsGoalsInvestmentsKnowledgeLearningMachine LearningMalignant NeoplasmsMedical GeneticsMedicineMethodologyMethodsMolecularMultiomic DataNatural Language ProcessingNeurodegenerative DisordersOutcomePathogenicityPatientsPharmaceutical PreparationsPrevention strategyProgram DevelopmentProliferatingProspective cohortReportingResearchSafetySamplingSeveritiesSignal TransductionSoftware ToolsSourceStandardizationTechniquesUnited StatesUpdateValidationbilling datacohortcomputable phenotypescomputerized toolscostcost effectivedeep learningdisease heterogeneitydiverse datadrug candidatedrug developmentdrug qualitydrug repurposingheterogenous datahigh riskimprovedin silicoknowledge baseknowledge graphlearning strategymachine learning frameworkmanufacturenovelnovel therapeutic interventionopen sourcepatient orientedphenotyping algorithmpragmatic trialprospectivestudy populationsuccesstooltranslational impact
项目摘要
ABSTRACT
Alzheimer’s disease (AD) and AD-related dementia (AD/ADRD) is the 6th leading cause of death in the United
States (US) – is an aging-related neurodegenerative disease with complex pathogenic mechanism affecting an
estimated 6.2 million Americans in 2021. Both the pathogenic mechanism and pathophysiology of AD/ADRD
are complex, creating difficulties in finding effective new treatment or prevention strategies, despite significant
investments in the last decade. On the other hand, the proliferation of large clinical research networks (CRNs)
with real-world data (RWD), such as electronic health records (EHRs), claims, and billing data among others,
offer unique opportunities to generate real-world evidence (RWE) that will have direct translational impacts on
AD/ADRD. In the past, RWD such as EHRs have limited use for AD/ADRD drug repurposing and primarily used
only for validating and evaluating the hypotheses generated by molecular level predictions of AD/ADRD
repurposing agents, partially due to a number of key methodological gaps: (1) the lack of integration with
existing rich biological and pathophysiological knowledge of AD/ADRD for hypothesis generation, (2) the lack of
validated computable phenotyping (CP) and natural language processing (NLP) algorithms and tools that can
accurately define the study populations, extract key relevant patient characteristics and meaningful outcomes
(e.g., MMSE scores to determine severity), (3) the lack of consideration on the heterogeneity of the disease (i.e.,
AD/ADRD subtypes), and (4) the lack of recognition of the inherent biases in RWD and the need of applying
causal inference principles. The goal of this project is to develop a comprehensive machine learning based
causal inference framework for generating high-throughput and high-quality drug repurposing hypotheses for
AD/ADRD by integrating heterogeneous information sources. There are three aims in this project. Aim 1 aims
at developing computable phenotypes to extract key patient characteristics and outcomes relevant to AD/ADRD
drug repurposing studies from RWD. Aim 2 aims at developing a learning-based causal inference framework
for generating drug repurposing hypotheses from RWD, a deep knowledge embedding framework for generating
drug repurposing hypotheses from biomedical knowledge bases (BKB); and a mutual information enhancement
framework that combines the information from both RWD and BKB to further improve the quality of the generated
hypotheses. Aim 3 aims at validating the generated hypotheses with diverse data sources and approaches.
The project will leverage the patient data from two large clinical research networks (CRNs) contributing to the
national Patient-Centered Clinical Research Network (PCORnet) – covering ~15 million Floridians and ~11
million New Yorkers. The developed algorithms and software will be open sourced and widely disseminated
within the CRNs and the AD/ADRD research communities.
抽象的
阿尔茨海默氏病(AD)和与AD相关的痴呆症(AD/ADRD)是统一死亡的第六大原因
国家(美国) - 一种与老龄化的神经退行性疾病,具有复杂的致病机制,影响了
估计2021年有620万美国人。
很复杂,在寻找有效的新待遇或预防策略方面遇到困难,目的地很重要
过去十年的投资。另一方面,大型临床研究网络(CRN)的扩散
使用现实世界数据(RWD),例如电子健康记录(EHR),索赔和计费数据等
提供独特的机会来产生真实的证据(RWE),这些证据将直接翻译对
广告/adrd。过去,诸如EHR之类的RWD用于AD/ADRD药物重新利用和主要使用的使用有限
仅用于验证和评估AD/ADRD分子水平预测产生的假设
重新利用代理,部分是由于许多关键方法论差距:(1)与
关于假设产生的AD/ADRD的现有丰富的生物学和病理生理学知识,(2)缺乏
经过验证的可计算表型(CP)和自然语言处理(NLP)算法和工具可以
准确定义研究人群,提取关键的相关患者特征和有意义的结果
(例如,MMSE得分以确定严重程度),(3)缺乏对疾病异质性的考虑(即
AD/ADRD子类型)和(4)缺乏对RWD中继承偏见的认识和应用的需求
因果推论原则。该项目的目的是开发基于机器学习的全面
因果推理框架,用于产生高通量和高质量的药物重新利用假设
通过整合异质信息源来广告/ADRD。这个项目有三个目标。目标1目标
开发可计算的表型以提取与AD/ADRD相关的关键患者特征和结果
RWD的药物重新利用研究。 AIM 2旨在开发基于学习的因果推理框架
用于从RWD产生药物重新利用的假设,这是一个深入的知识嵌入框架
来自生物医学知识库(BKB)的药物重新利用假设;和共同的信息增强
结合了RWD和BKB信息以进一步提高生成的质量的框架
假设。 AIM 3的目的是通过不同的数据源和方法来验证生成的假设。
该项目将利用来自两个大型临床研究网络(CRN)的患者数据,从而有助于
国家以患者为中心的临床研究网络(PCORNET) - 覆盖约1500万佛罗里达人和〜11
百万纽约人。开发的算法和软件将被开源并广泛传播
在CRN和AD/ADRD研究社区中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang Bian其他文献
Jiang Bian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang Bian', 18)}}的其他基金
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
- 批准号:
10590413 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
- 批准号:
10751275 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
- 批准号:
10699171 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
- 批准号:
10728800 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
- 批准号:
10682237 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
- 批准号:
10752848 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
- 批准号:
10608470 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
- 批准号:
10392169 - 财政年份:2022
- 资助金额:
$ 77.52万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10677539 - 财政年份:2022
- 资助金额:
$ 77.52万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
内源DOM介导下微塑料的老化过程及对植物的影响机制
- 批准号:42377233
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
老化过程对沙尘辐射效应和反馈机制的影响研究
- 批准号:42375107
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 77.52万 - 项目类别:
Center of Research Translation on Osteoporosis Bone Anabolic Therapies
骨质疏松症骨合成代谢疗法研究转化中心
- 批准号:
10404412 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Hormone Therapy for Peri- and Postmenopausal Women with HIV (HoT)
感染艾滋病毒的围绝经期和绝经后妇女的激素治疗 (HoT)
- 批准号:
10698682 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Impact of Mitochondrial Lipidomic Dynamics and its Interaction with APOE Isoforms on Brain Aging and Alzheimers Disease
线粒体脂质组动力学及其与 APOE 亚型的相互作用对脑衰老和阿尔茨海默病的影响
- 批准号:
10645610 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别:
Investigation of Sex and Gender Differences in Cardiovascular Risk in Rural Communities
农村社区心血管风险的性别和性别差异调查
- 批准号:
10608716 - 财政年份:2023
- 资助金额:
$ 77.52万 - 项目类别: