Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
基本信息
- 批准号:10608470
- 负责人:
- 金额:$ 82.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAlabamaAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease patientArtificial IntelligenceCharacteristicsClinicalClinical ResearchClinical TrialsCollectionDataData ScienceDetectionDocumentationEffectivenessEligibility DeterminationEnsureEventFloridaGeneral PopulationIndividualLibrariesMachine LearningMethodologyMethodsModelingNatural Language ProcessingOnline SystemsOutcomeParticipantPatient-Focused OutcomesPatientsPharmaceutical PreparationsPopulationProcessResearchResearch PersonnelSafetySerious Adverse EventSiteTarget PopulationsTreatment EffectivenessTreatment EfficacyWorkcohortcomputable phenotypesdata resourcedesignelectronic health record systemhigh dimensionalityimprovedinterestnovelpatient orientedpatient safetyprivacy preservationprototypestudy populationsuccesstooltraittrial designtrial enrollmentuser centered design
项目摘要
ABSTRACT
Clinical trials are often conducted under idealized and rigorously controlled conditions to ensure internal validity
(maximizing potential treatment efficacy) while balancing patient safety (e.g., serious adverse events [SAEs]);
but these conditions—often reflected in trials’ eligibility criteria—paradoxically, limits (1) the ability to identify the
“right” study populations of the trials, and (2) the trials’ generalizability to the target population in real-world
settings. Low generalizability has long been a concern, including for Alzheimer's disease (AD) trials. AD trial
participants are systematically younger than AD patients in the general population, where eligibility criteria design
issues are arguably the biggest yet modifiable barriers. The FDA has launched numerous initiatives to improve
trial design and enrollment practices, such as using enrichment strategies (e.g., “use patient characteristic to
select a study population in which detection of a drug effect [or safety event] is more likely than it would be in an
unselected population”), so that the trial participants can better reflect the real-world target population and the
trials are more likely to succeed. However, there are significant gaps between the need to improve AD trial
eligibility criteria design and ways available to fulfill the need in practice. On the other hand, rapid adoption of
electronic health record (EHR) systems has made large collections of real-world data (RWD) that reflect the
characteristics and outcomes of the patients being treated in real-world settings, available for research. The
increasing availability of RWD combined with the advancements in artificial intelligence (AI), especially
machine learning (ML) offer untapped opportunities to generate real-world evidence (RWE) to support
eligibility criteria design for AD trials, due to a number of key methodological gaps: (1) the lack of validated
computable phenotyping (CP) and natural language processing (NLP) algorithms and tools that can
accurately define the populations (e.g., AD patients) of interest and extract key relevant patient characteristics
and outcomes of interest (e.g., trial endpoints such as MoCA and safety profile such as SAEs) from RWD, (2)
the lack of ways to identify the desired study populations (and corresponding eligibility criteria), considering the
impact of criteria to potential treatment effectiveness, patient safety, and study generalizability, and (3) the need
of an easy-to-use toolbox to support trialists’ eligibility criteria design process. We propose (1) novel causal-
principled, explainable AI (XAI) approaches to generate RWE to facilitate AD trial eligibility criteria design, and
(2) to create the web-based ALZHEIMER'S DISEASE ELIGIBILITY EXPLAINER (ADEP) tool. We will leverage two
large RWD resources, the OneFlorida+ (~19 million patients from Florida, Georgia, and Alabama) and INSIGHT
(~12 million New Yorkers) clinical research networks (CRNs) contributing to the national Patient-Centered
Clinical Research Network (PCORnet). The success of this project will establish (1) a novel, generalizable, and
XAI-based trial enrichment framework with large collections of distributed RWD, and (2) a prototype toolbox that
can provide RWE to eligibility criteria design, balancing effectiveness and patient safety in the target population.
抽象的
临床试验通常是在理想化和严格控制的条件下进行的,以确保内部有效性
(最大化潜在的治疗效率)在平衡患者安全的同时(例如,严重的不良事件[SAE]);
但是,这些条件(通常在试验的资格标准中反映)偏见,限制(1)识别能力
“右”研究人群的试验人群,以及(2)试验对现实世界中目标人群的概括性
设置。长期以来,人们一直担心较低的普遍性,包括阿尔茨海默氏病(AD)试验。广告试验
参与者在一般人群中比AD患者系统年轻,那里的资格标准设计
问题可以说是最大但可修改的障碍。 FDA发起了许多倡议以改进
试验设计和注册实践,例如使用富集策略(例如,“使用患者特征
选择一个研究人群,其中检测药物作用[或安全事件]比在
未选择的人群”),以便审判参与者可以更好地反映现实世界的目标人群和
试验更有可能成功。但是,改善广告试验的需求之间存在很大的差距
资格标准设计和可满足实践需求的方法。另一方面,快速采用
电子健康记录(EHR)系统制作了大量的现实数据(RWD),以反映
在现实世界中接受治疗的患者的特征和结果,可用于研究。这
RWD的可用性增加与人工智能(AI)的进步相结合,尤其是
机器学习(ML)提供了未开发的机会,以生成真实的证据(RWE)来支持
由于许多关键的方法论差距:(1)缺乏经过验证的资格标准设计。
可计算的表型(CP)和自然语言处理(NLP)算法和工具可以
准确定义感兴趣的人群(例如AD患者),并提取关键相关患者特征
RWD的感兴趣的结果(例如,MOCA和安全性等试验终点),(2)
缺乏确定所需的研究人群(以及相应合格标准)的方法,考虑到
标准对潜在治疗有效性,患者安全性和研究概括性的影响,以及(3)需求
一个易于使用的工具箱,以支持试验者的资格标准设计过程。我们提出了(1)新的因果关系 -
校长,可解释的AI(XAI)方法来生成RWE,以促进AD试用资格标准设计,并且
(2)创建基于网络的阿尔茨海默氏病资格解释器(ADEP)工具。我们将利用两个
大型RWD资源,Oneflorida+(来自佛罗里达州,佐治亚州和阿拉巴马州的1900万患者)和Insight
(约1200万纽约人)临床研究网络(CRN),以国家为中心的国家
临床研究网络(PCORNET)。该项目的成功将建立(1)小说,可推广的,并且
基于XAI的试验丰富框架,具有大量的分布式RWD,以及(2)一个原型工具箱
可以为目标人群中的资格标准设计,平衡效率和患者安全,为RWE提供RWE。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiang Bian其他文献
Jiang Bian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiang Bian', 18)}}的其他基金
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 82.02万 - 项目类别:
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
- 批准号:
10590413 - 财政年份:2023
- 资助金额:
$ 82.02万 - 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
- 批准号:
10751275 - 财政年份:2023
- 资助金额:
$ 82.02万 - 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
- 批准号:
10699171 - 财政年份:2023
- 资助金额:
$ 82.02万 - 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
- 批准号:
10728800 - 财政年份:2023
- 资助金额:
$ 82.02万 - 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
- 批准号:
10682237 - 财政年份:2023
- 资助金额:
$ 82.02万 - 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
- 批准号:
10752848 - 财政年份:2023
- 资助金额:
$ 82.02万 - 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
- 批准号:
10576853 - 财政年份:2022
- 资助金额:
$ 82.02万 - 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
- 批准号:
10392169 - 财政年份:2022
- 资助金额:
$ 82.02万 - 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:
10368562 - 财政年份:2022
- 资助金额:
$ 82.02万 - 项目类别:
相似海外基金
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
- 批准号:
10590413 - 财政年份:2023
- 资助金额:
$ 82.02万 - 项目类别:
CAMELLIA Cohort: A longitudinal study to understand sexual health and prevention among women in Alabama
CAMELLIA 队列:一项了解阿拉巴马州女性性健康和预防的纵向研究
- 批准号:
10701932 - 财政年份:2022
- 资助金额:
$ 82.02万 - 项目类别:
Supplement of NIDDK R01 newer GLDs and Clinical Outcomes
NIDDK R01 新 GLD 和临床结果的补充
- 批准号:
10842681 - 财政年份:2022
- 资助金额:
$ 82.02万 - 项目类别:
CAMELLIA Cohort: A longitudinal study to understand sexual health and prevention among women in Alabama
CAMELLIA 队列:一项了解阿拉巴马州女性性健康和预防的纵向研究
- 批准号:
10538855 - 财政年份:2022
- 资助金额:
$ 82.02万 - 项目类别:
Transcending COVID-19 barriers to pain care in rural America: Pragmatic comparative effectiveness trial of evidence-based, on-demand, digital behavioral treatments for chronic pain
超越美国农村地区疼痛护理的 COVID-19 障碍:针对慢性疼痛的循证、按需、数字行为治疗的实用比较有效性试验
- 批准号:
10425444 - 财政年份:2021
- 资助金额:
$ 82.02万 - 项目类别: