ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
基本信息
- 批准号:10753675
- 负责人:
- 金额:$ 115.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
ABSTRACT
Alzheimer's disease and related dementias (AD/ADRD) are the most common neurodegenerative brain disease
and characterized by massive loss of memory and learning. AD/ADRD affects more than 6 million Americans
and puts a heavy burden on caregivers in society. However, effective treatment of AD/ADRD is still lacking.
While randomized clinical trials (RCT) can provide reliable evidence on the effectiveness of interventions, they
also have inherent limitations including high cost and long execution time. In addition, RCTs usually are
conducted on selected populations and in specialized environments with limited follow up time. Therefore, they
could have limitations in generalizability to real-world clinical practice. Clinical trial simulation is becoming an
effective approach to assess feasibility, investigate assumptions, and refine study protocols before conducting
the actual trials. Increased availability and granularity of real-world data (RWD) such as electronic health record
(EHR) and medical claims data along with advances in data science offer untapped opportunities to leverage
RWD for trial simulation studies to generate real world evidence (RWE). Nevertheless, there are methodological
barriers and informatics challenges in supporting RWD-based trial simulation studies, especially for AD: (1)
clinical trials need to be represented using a formal and standard approach (i.e., ontologies) to capture the entire
scope of a trial, especially eligibility criteria and outcome measures (i.e., both effectiveness and safety); (2) such
formal and standard representation needs to be made interoperable with RWD standards (e.g., common data
models) to identify study cohorts and relevant, important patient characteristics (i.e., via computable phenotypes
and natural language processing [NLP] methods as rich AD-related information such as cognitive scores often
exist in unstructured clinical notes); and (3) comprehensive and reusable pipelines need to be implemented that
can seamlessly align with existing large-scale RWD for generating high-quality analytic-ready datasets for AD
clinical trial simulation studies. To address these barriers, we propose create and pilot test the ACTS
(Alzheimer's disease Clinical Trial Simulation) system, leveraging three large collections of RWD (~20 million
patients from the OneFlorida network, UT Physician Clinical Data Research Warehouse, and the Optum’s
Clinformatics data). Specifically, we propose to develop novel informatics approaches to represent the entirety
of AD trials while considering the connection of RWD (Aim 1), to use both structured and unstructured RWD to
develop robust phenotyping algorithms that will render previously incomputable AD study traits computable (Aim
2), and to develop the ACTS web application, which will provide an integrated environment for AD researchers
to construct virtual AD trials using an interactive web interface and obtain analytic-ready datasets for trial
simulation studies (Aim 3).
抽象的
阿尔茨海默氏病和相关痴呆症(AD/ADRD)是最常见的神经退行性脑疾病
并以大规模的记忆和学习为特征。 AD/ADRD影响超过600万美国人
并对社会的看护人造成了沉重的烧伤。但是,仍然缺乏对AD/ADRD的有效处理。
尽管随机临床试验(RCT)可以提供有关干预措施有效性的可靠证据,但
还具有固有的限制,包括高成本和长时间执行时间。此外,RCT通常是
在选定人群和随访时间有限的专业环境中进行。因此,他们
可以在现实世界临床实践的普遍性方面存在局限性。临床试验模拟已成为
有效评估可行性,调查假设和完善研究方案的方法
实际试验。实际数据(RWD)(例如电子健康记录)的可用性和粒度增加
(EHR)和医疗索赔数据以及数据科学的进步提供了尚未开发的机会来利用
用于产生现实世界证据(RWE)的试验模拟研究的RWD。然而,有方法论
在支持基于RWD的试验仿真研究方面遇到的障碍和信息挑战,尤其是针对AD:(1)
需要使用正式和标准方法(即本体学)来代表临床试验以捕获整个
试验的范围,特别是合格的标准和结果指标(即有效性和安全性); (2)这样
需要与RWD标准互操作正式和标准表示(例如,常见数据
模型)确定研究队列和相关的重要患者特征(即,通过可计算的表型
和自然语言处理[NLP]作为丰富的广告相关信息,例如认知分数
存在于非结构化临床注释中); (3)需要实施全面和可重复使用的管道
可以与现有的大规模RWD无缝保持一致,以生成用于AD的高质量分析的数据集
临床试验模拟研究。为了解决这些障碍,我们建议创建和试点测试行为
(阿尔茨海默氏病临床试验模拟)系统,利用三个大型RWD(约2000万)
Oneflorida网络,UT医师临床数据研究仓库和Optum的患者
临床数据数据)。特别是,我们建议开发新颖的信息方法以表示整个
在考虑RWD的连接(AIM 1)的同时,使用结构化和非结构化RWD
开发强大的表型算法,该算法将使以前无法计算的AD研究特征可计算(AIM
2),并开发ACTS Web应用程序,该应用程序将为广告研究人员提供一个集成的环境
使用交互式Web界面构建虚拟广告试验并获取用于试验的分析数据集
模拟研究(目标3)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Jiang Bian的其他基金
Disparities of Alzheimer's disease progression in sexual and gender minorities
性少数群体中阿尔茨海默病进展的差异
- 批准号:1059041310590413
- 财政年份:2023
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
Post-Acute Sequelae of SARS-CoV-2 Infection and Subsequent Disease Progression in Individuals with AD/ADRD: Influence of the Social and Environmental Determinants of Health
AD/ADRD 患者 SARS-CoV-2 感染的急性后遗症和随后的疾病进展:健康的社会和环境决定因素的影响
- 批准号:1075127510751275
- 财政年份:2023
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
Artificial Intelligence and Counterfactually Actionable Responses to End HIV (AI-CARE-HIV)
人工智能和反事实可行的终结艾滋病毒应对措施 (AI-CARE-HIV)
- 批准号:1069917110699171
- 财政年份:2023
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
An end-to-end informatics framework to study Multiple Chronic Conditions (MCC)'s impact on Alzheimer's disease using harmonized electronic health records
使用统一的电子健康记录研究多种慢性病 (MCC) 对阿尔茨海默病的影响的端到端信息学框架
- 批准号:1072880010728800
- 财政年份:2023
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
AI-ADRD: Accelerating interventions of AD/ADRD via Machine learning methods
AI-ADRD:通过机器学习方法加速 AD/ADRD 干预
- 批准号:1068223710682237
- 财政年份:2023
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
Advancing Precision Lung Cancer Surveillance and Outcomes in Diverse Populations (PLuS2)
推进不同人群的精准肺癌监测和结果 (PLuS2)
- 批准号:1075284810752848
- 财政年份:2023
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
Eligibility criteria design for Alzheimer's trials with real-world data and explainable AI
利用真实数据和可解释的人工智能设计阿尔茨海默病试验的资格标准
- 批准号:1060847010608470
- 财政年份:2023
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
- 批准号:1057685310576853
- 财政年份:2022
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
Computational Drug Repurposing for AD/ADRD with Integrative Analysis of Real World Data and Biomedical Knowledge
通过对真实世界数据和生物医学知识的综合分析,计算药物再利用用于 AD/ADRD
- 批准号:1039216910392169
- 财政年份:2022
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
PANDA-MSD: Predictive Analytics via Networked Distributed Algorithms for Multi-System Diseases
PANDA-MSD:通过网络分布式算法对多系统疾病进行预测分析
- 批准号:1067753910677539
- 财政年份:2022
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
相似海外基金
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:1066360510663605
- 财政年份:2023
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
Social Vulnerability, Sleep, and Early Hypertension Risk in Younger Adults
年轻人的社会脆弱性、睡眠和早期高血压风险
- 批准号:1064314510643145
- 财政年份:2023
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
Unraveling how Lipophilic Modulators Alter pLGIC Function via Interactions with the M4 Transmembrane Helix
揭示亲脂性调节剂如何通过与 M4 跨膜螺旋相互作用改变 pLGIC 功能
- 批准号:1078575510785755
- 财政年份:2023
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
Testing Approaches to Promote Breast Cancer Screening in Rural Ghana
促进加纳农村地区乳腺癌筛查的测试方法
- 批准号:1064544610645446
- 财政年份:2023
- 资助金额:$ 115.53万$ 115.53万
- 项目类别:
Maximizing the Value of VA Homemaker/Home Health Aide (H/HHA) Services to Veterans, Caregivers and VA: Supporting Older Veterans’ Pathways to Stable H/HHA Care
最大限度地发挥 VA 家庭主妇/家庭健康助理 (H/HHA) 服务对退伍军人、护理人员和 VA 的价值:支持老年退伍军人 — 获得稳定 H/HHA 护理的途径
- 批准号:1063859210638592
- 财政年份:2023
- 资助金额:$ 115.53万$ 115.53万
- 项目类别: