Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
基本信息
- 批准号:9906913
- 负责人:
- 金额:$ 38.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-11 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptedAdultAppearanceAreaAtlasesBehavioralBrainBrain DiseasesCerebral cortexChildCognitionCognition DisordersCognitiveConsensusDataData SetDevelopmentDiagnosisDiffuseEarly InterventionEnsureExhibitsFree WillFrequenciesFunctional Magnetic Resonance ImagingGoalsGraphGrowthGrowth DisordersHigh birth weight infantHumanIndividualIndividual DifferencesInfantInvestigationMagnetic Resonance ImagingMapsMeasurementMethodsMotivationMyelinNational Institute of Mental HealthNeurodevelopmental DisorderPathway AnalysisPatternPopulationProcessPropertyReproducibilityRestStatistical sensitivityStrategic PlanningStructureSubgroupSurfaceThickTissuesWeightbasebrain abnormalitiescomputerized toolsconnectomecritical perioddiffusion weightedhigh risk infantinter-individual variationmultimodalityneuroimagingnovelnovel strategiespersonalized approachpopulation basedpostnataltool
项目摘要
Project Abstract
The increasing availability of large-scale longitudinal multimodal infant brain MRI datasets, e.g., the Baby
Connectome Project (BCP), provides an unprecedented opportunity to precisely chart the dynamic trajectories
of early brain development, essential for understanding normative growth and neurodevelopmental disorders. A
major barrier is the critical lack of computational tools, atlases and parcellations for cortical surface-based
analysis of the challenging infant MRI, which typically exhibits low tissue contrast and regionally-heterogeneous,
dynamic changes of cortical properties. To fill this gap, we have pioneered a comprehensive set of infant-
dedicated cortical surface analysis tools and atlases. Our tools and discoveries on early brain development
have been highlighted in NIMH’s 2015-2020 Strategic Plan. However, computational approaches are still
lacking for infant cortical parcellation based on the dynamic brain properties from longituidnal multimodal MRI.
Parcellation is a prerequsite in a wide variety of infant neuroimaging applications, e.g., region localization, inter-
individual variability investigation, inter-study comparison, statistical sensitivity boosting, node definition for
network analysis, and feature reduction for identificaiton of brain disorders. Hence, this project is focused on
creating and disseminating novel computational tools for both population-level and individualized infant
cortical parcellation utilizing developmental patterns of multiple complementary brain properties, and
applying them to better understanding of inter-individual variability and early brain development. The
motivation is that the dynamic development of multiple properties (e.g., cortical thickness, folding, diffusivity,
myelin content, surface area, structural and functional connectivity) in infants essentially reflects the rapid
changes of underlying microstructures and their connectivity, which jointly determine the functional principle of
each region. Hence, developmental patterns are ideal for deriving distinct regions in development, microstructure,
function, and connectivity for early brain development studies. To achieve this goal, we propose four specific
aims. In Aim 1, we will develop a novel method for population-level cortical parcellation based on
developmental patterns of multiple properties, by nonlinear fusion of heterogeneous multimodal information
from a large population of infants. In Aim 2, we further propose a novel approach for individualized parcellation
of each infant’s cortical surfaces based on its own multimodal developmental patterns, thus accounting for
remarkable inter-subject variability. We will leverage the population-level parcellation to guide the individualized
parcellation in an iterative manner via graph cuts, thus leading to precise individualized parcellations that are
easily comparable across individuals. In Aim 3, to understand the remarkable inter-individual variability in each
parcellated region, we will discover the representative regional appearance patterns of each cortical property
from a large infant population, based on multi-scale spatial-frequency characterizations of cortical property
maps via spherical wavelets. In Aim 4, leveraging our tools, atlases, and parcellations, we will chart the
multimodal developmental trajectories for each representative pattern of each property and investigate their
relationships with behavioral/cognitive scores. Finally, we will freely release our tools, parcellations and the
processed BCP data to the public.
项目摘要
大规模纵向多模态婴儿脑 MRI 数据集(例如婴儿)的可用性不断增加
连接组项目(BCP)为精确绘制动态轨迹提供了前所未有的机会
早期大脑发育的过程,对于理解正常生长和神经发育障碍至关重要。
主要障碍是严重缺乏基于皮质表面的计算工具、地图集和分区
对具有挑战性的婴儿 MRI 进行分析,该 MRI 通常表现出低组织对比度和区域异质性,
为了填补这一空白,我们开创了一套全面的婴儿-
我们关于早期大脑发育的专用皮质表面分析工具和图集。
NIMH 的 2015-2020 年战略计划中已经强调了这一点,但是计算方法仍然存在。
缺乏基于纵向多模态 MRI 动态大脑特性的婴儿皮质分区。
分区是各种婴儿神经成像应用的先决条件,例如区域定位、内部
个体差异调查、研究间比较、统计敏感性提升、节点定义
因此,该项目的重点是网络分析和特征缩减以识别大脑疾病。
为人口水平和个性化婴儿创建和传播新颖的计算工具
利用多种互补大脑特性的发育模式进行皮质分割,以及
应用它们来更好地理解个体间的差异和早期大脑发育。
动机是多种特性的动态发展(例如,皮质厚度、折叠、扩散率、
婴儿的髓磷脂含量、表面积、结构和功能连接)本质上反映了婴儿的快速发育
底层微观结构及其连接性的变化,共同决定了功能原理
因此,发育模式对于导出发育、微观结构、
为了实现这一目标,我们提出了四个具体的建议。
在目标 1 中,我们将开发一种基于群体水平皮质分区的新方法。
通过异构多模态信息的非线性融合,形成多种属性的发展模式
在目标 2 中,我们进一步提出了一种个性化分割的新方法。
每个婴儿的皮质表面基于其自身的多模式发育模式,从而解释
我们将利用人口层面的分区来指导个体化。
通过图形切割以迭代方式进行分区,从而产生精确的个性化分区
在目标 3 中,了解每个人之间显着的个体差异。
分割区域,我们将发现每个皮质属性的代表性区域外观模式
来自大量婴儿群体,基于皮质特性的多尺度空间频率特征
在目标 4 中,利用我们的工具、地图集和分区,我们将绘制地图。
每个属性的每个代表性模式的多模态发展轨迹并研究它们
最后,我们将自由发布我们的工具、分区和
向公众处理 BCP 数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Li其他文献
Gang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Li', 18)}}的其他基金
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10346720 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Developing an Individualized Deep Connectome Framework for ADRD Analysis
开发用于 ADRD 分析的个性化深度连接组框架
- 批准号:
10515550 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10571842 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Infant Functional Connectome Fingerprinting based on Deep Learning
基于深度学习的婴儿功能连接组指纹图谱
- 批准号:
10288361 - 财政年份:2021
- 资助金额:
$ 38.88万 - 项目类别:
Harmonizing and Archiving of Large-scale Infant Neuroimaging Data
大规模婴儿神经影像数据的协调和归档
- 批准号:
10189251 - 财政年份:2021
- 资助金额:
$ 38.88万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9755508 - 财政年份:2018
- 资助金额:
$ 38.88万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
10396127 - 财政年份:2018
- 资助金额:
$ 38.88万 - 项目类别:
Using High Throughput Approach to Identify/Characterize Functional Variants on MS
使用高通量方法在 MS 上识别/表征功能变异
- 批准号:
9670361 - 财政年份:2018
- 资助金额:
$ 38.88万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10162317 - 财政年份:2018
- 资助金额:
$ 38.88万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10407000 - 财政年份:2018
- 资助金额:
$ 38.88万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Multi-level interventions for addressing tobacco cessation and SDOH in Community Health Centers (CHCs)
解决社区卫生中心 (CHC) 戒烟和 SDOH 问题的多层次干预措施
- 批准号:
10661440 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别:
Spatially Resolved CRISPR Genomics for Dissecting Testicular Gene Functions at Scale
空间分辨 CRISPR 基因组学用于大规模剖析睾丸基因功能
- 批准号:
10573701 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别:
Impact of Structural Racism on Racial Disparities in Cognitive Impairment
结构性种族主义对认知障碍种族差异的影响
- 批准号:
10572864 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别:
Bayesian Mortality Estimation from Disparate Data Sources
来自不同数据源的贝叶斯死亡率估计
- 批准号:
10717177 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别:
Immune-epithelial progenitor interactions drive age-associated dysplastic lung repair post viral pneumonia
免疫上皮祖细胞相互作用驱动病毒性肺炎后与年龄相关的发育不良肺修复
- 批准号:
10751699 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别: