Developing an Individualized Deep Connectome Framework for ADRD Analysis
开发用于 ADRD 分析的个性化深度连接组框架
基本信息
- 批准号:10515550
- 负责人:
- 金额:$ 168.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-18 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer’s disease biomarkerAmericasAnatomyArchitectureBase of the BrainBiological MarkersBrainBrain MappingClinicalClinical assessmentsCommunitiesComputing MethodologiesDataData SetDementiaDementia with Lewy BodiesDevelopmentDiagnosisDiffusion Magnetic Resonance ImagingFamilyFree WillFunctional Magnetic Resonance ImagingGoalsHealthcare SystemsHeterogeneityHourHumanIndividualInfrastructureLearningLewy Body DementiaMagnetic Resonance ImagingMapsMeasuresMethodsModalityMultimodal ImagingParkinson&aposs DementiaPathologyPatientsPopulationProcessPublic HealthResearchShapesStructureSurfaceSymptomsSystemTechniquesTimeTrainingWorkbasebiobankclinical predictorscomputerized toolsconnectomeconnectome datacostdeep learningdeep learning modeldiagnostic criteriaflexibilityfluorodeoxyglucose positron emission tomographyhuman old age (65+)individual patientindividual variationinnovationinterestmental stateneural networkneuroimagingneuroimaging markernormal agingresponsesingle photon emission computed tomographytool
项目摘要
As the most and the second most common type of dementia, AD and Lewy body dementias (LBD), including
dementia with Lewy bodies and Parkinson’s disease dementia, account for 65% to 85% individuals with
AD/ADRD. Misdiagnosis between AD and ADRD, e.g., AD vs. LBD, will lead to non-beneficial, incomplete, or
even harmful treatment and management options. Comparing to diagnosis and prediction of AD from normal
aging, differentiation between AD and LBD is very challenging, due to both mixed pathologies and clinical
symptoms. Current MRI-based neuroimaging studies are limited to group-wise analysis between AD and LBD
patients and controls, and there are significant challenges in dealing with the remarkable heterogeneity in
AD/ADRD pathologies and clinical symptoms, and in pinpointing specific and subtle abnormalities across
different individual AD/ADRD brains. In this project, we will significantly advance and integrate our powerful
methods/tools and apply them to multiple AD/LBD datasets to discover and identify individualized connectome-
scale differences between AD and LBD, by leveraging the cutting-edge deep learning techniques. Specifically,
we will 1) discover, define and represent individual GyralNets to characterize brain connectome heterogeneity
and AD/LBD related abnormalities for individual AD/LBD patient; 2) learn a cortical surface transformation to
align GyralNets from population to individuals using unsupervised spherical networks and 3) develop a new
infrastructure to integrate multiple types of connectome data including anatomical, structural and functional
connectome, and characterize, represent and summarize their deep relationship as a “individual connectome
signature” by maximizing its prediction capability between AD and LBD.
AD 和路易体痴呆 (LBD) 作为最常见和第二常见的痴呆类型,包括
路易体痴呆和帕金森病痴呆占 65% 至 85% 的患者
AD/ADRD 之间的误诊,例如 AD 与 LBD,将导致无益的、不完整的或
与正常的 AD 诊断和预测相比,甚至是有害的治疗和管理选择。
随着年龄的增长,由于混合的病理学和临床,AD 和 LBD 的区分非常具有挑战性。
目前基于 MRI 的神经影像学研究仅限于 AD 和 LBD 之间的分组分析。
患者和对照之间的差异,并且在处理显着的异质性方面存在重大挑战
AD/ADRD 病理学和临床症状,以及查明特定和微妙的异常
在这个项目中,我们将显着推进和整合我们强大的 AD/ADRD 大脑。
方法/工具并将其应用于多个 AD/LBD 数据集以发现和识别个性化连接组
通过利用尖端的深度学习技术来缩小 AD 和 LBD 之间的差异具体来说,
我们将 1) 发现、定义和表示个体 GyralNets 以表征大脑连接组异质性
以及个别 AD/LBD 患者的 AD/LBD 相关异常 2) 学习皮质表面转化
使用无监督的球形网络将 GyralNets 从群体到个体进行对齐,并且 3)开发一个新的
集成多种类型的连接组数据(包括解剖、结构和功能)的基础设施
连接组,并将它们的深层关系表征、表示和总结为“个体连接组”
通过最大化 AD 和 LBD 之间的预测能力来实现“签名”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Li其他文献
Gang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Li', 18)}}的其他基金
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10346720 - 财政年份:2022
- 资助金额:
$ 168.66万 - 项目类别:
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10571842 - 财政年份:2022
- 资助金额:
$ 168.66万 - 项目类别:
Infant Functional Connectome Fingerprinting based on Deep Learning
基于深度学习的婴儿功能连接组指纹图谱
- 批准号:
10288361 - 财政年份:2021
- 资助金额:
$ 168.66万 - 项目类别:
Harmonizing and Archiving of Large-scale Infant Neuroimaging Data
大规模婴儿神经影像数据的协调和归档
- 批准号:
10189251 - 财政年份:2021
- 资助金额:
$ 168.66万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
9906913 - 财政年份:2018
- 资助金额:
$ 168.66万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9755508 - 财政年份:2018
- 资助金额:
$ 168.66万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
10396127 - 财政年份:2018
- 资助金额:
$ 168.66万 - 项目类别:
Using High Throughput Approach to Identify/Characterize Functional Variants on MS
使用高通量方法在 MS 上识别/表征功能变异
- 批准号:
9670361 - 财政年份:2018
- 资助金额:
$ 168.66万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10162317 - 财政年份:2018
- 资助金额:
$ 168.66万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10407000 - 财政年份:2018
- 资助金额:
$ 168.66万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 168.66万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 168.66万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 168.66万 - 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 168.66万 - 项目类别: