Harmonizing and Archiving of Large-scale Infant Neuroimaging Data
大规模婴儿神经影像数据的协调和归档
基本信息
- 批准号:10189251
- 负责人:
- 金额:$ 62.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:2 year old5 year oldAddressAdoptedAdultAge-MonthsArchivesAreaAtlasesBRAIN initiativeBig DataBiologicalBiological PreservationBirthBrainCerebral cortexChildCodeDataData SetDepositionDevelopmentDiffuseEnsureExhibitsFeedbackFundingGoalsGrowthHumanImageImaging technologyInfantInstitutesIntuitionJointsLearningMRI ScansMachine LearningMagnetic Resonance ImagingMapsMethodsMyelinNational Institute of Mental HealthNetwork-basedNeurodevelopmental DisorderPatternPositioning AttributeProcessPropertyProtocols documentationQuality ControlReproducibilityResolutionRiskScanningSeriesSiteSource CodeStrategic PlanningStructureSurfaceTechniquesThickTissuesTravelTwin Multiple BirthUnited States National Institutes of HealthVariantautism spectrum disorderbasebrain abnormalitiescomputational atlascomputerized toolsconnectomecortex mappingcritical perioddata archivedata harmonizationdeep learningdesignimaging studyimprovedinfancyneural networkneuroimagingnovelpostnatalresponsesecondary analysistool
项目摘要
Project Abstract
The first postnatal years are an exceptionally dynamic and critical period of structural and functional development
of the human brain. Many neurodevelopmental disorders are the consequence of abnormal brain development
during this stage. Several NIH-funded studies have recently acquired and released large-scale infant brain MRI
datasets in the National Institute of Mental Health Data Archive (NDA), leading to over 3,000 publically-available
infant MRI scans from multiple imaging sites. Joint analysis of these big data of infant brains will undoubtedly
improve our limited understanding of normative early brain development and neurodevelopmental disorders with
boosted statistical power and reproducibility. However, the processed and harmonized data of these multi-site
infant MR images still remain publically absent, due to the challenges in processing and analyzing infant MR
images, which typically exhibit extremely low tissue contrast, large within-tissue intensity variations, and
regionally-heterogeneous dynamic changes. To address this critical issue, the goal of this project is to
comprehensively process, harmonize, discover and archive large-scale, multi-site public infant MRI datasets to
significantly advance early brain development studies, by taking advantage of our infant-tailored
computational tools and further developing advanced machine learning techniques. In Aim 1, we will
extensively process large-scale infant MRI datasets by adopting our established and recently-improved infant-
dedicated cortical surface-based computational tools and further develop a deep spherical neural network for
quality control of produced cortical property maps. This will lead to quality-ensured vertex-wise maps of multiple
biologically-distinct cortical properties, e.g., cortical thickness, surface area, myelin content, sulcal depth, local
gyrification, curvature and diffusivity. In Aim 2, to remove site effects associated with different scanners and
imaging protocols and meanwhile preserve biological associations, we will harmonize the computed cortical
property maps from multi-site data in Aim 1 by leveraging our surface-to-surface cycle-consistent generative
adversarial networks (S2SGAN) based on the spherical U-Net, without requiring traveling subjects (paired data)
across sites. To further increase the efficiency and learn more robust feature representation in the whole multi-
site data, we propose to extend S2SGAN to jointly harmonize all multi-site cortical property maps using a single
generator. In Aim 3, leveraging the informative growth patterns and gradient information of the harmonized maps
of multiple cortical properties in Aim 2, we will discover distinct cortical regions, by capitalizing on multi-view
nonnegative matrix factorization in a data-driven manner, without making any assumption on the parametric
forms of growth patterns. All our processed data, results, computational tools, and source codes will be deposited
into NDA, NITRC, and GitHub to significantly accelerate the pace of early brain development studies.
项目摘要
出生后最初几年是结构和功能发育异常活跃和关键的时期
人类大脑的。许多神经发育障碍是大脑发育异常的结果
在这个阶段。 NIH 资助的几项研究最近获得并发布了大规模婴儿脑部 MRI
国家心理健康研究所 (NDA) 中的数据集,导致超过 3,000 个公开可用的数据集
来自多个成像部位的婴儿 MRI 扫描。对这些婴儿大脑大数据的联合分析无疑将
提高我们对规范性早期大脑发育和神经发育障碍的有限理解
提高了统计功效和再现性。然而,这些多站点的处理和协调数据
由于处理和分析婴儿 MR 方面的挑战,婴儿 MR 图像仍然不公开
图像,通常表现出极低的组织对比度、大的组织内强度变化,以及
区域异质动态变化。为了解决这个关键问题,该项目的目标是
全面处理、协调、发现和存档大规模、多站点公共婴儿 MRI 数据集,以
通过利用我们为婴儿量身定制的技术,显着推进早期大脑发育研究
计算工具并进一步开发先进的机器学习技术。在目标 1 中,我们将
通过采用我们建立的和最近改进的婴儿-
专用的基于皮质表面的计算工具,并进一步开发深度球形神经网络
生成的皮质属性图的质量控制。这将导致多个有质量保证的顶点映射
生物学上不同的皮质特性,例如皮质厚度、表面积、髓磷脂含量、脑沟深度、局部
回转率、曲率和扩散率。在目标 2 中,消除与不同扫描仪相关的场地影响
成像协议,同时保留生物关联,我们将协调计算的皮质
利用我们的地对地循环一致生成模型,从目标 1 中的多站点数据中绘制属性图
基于球形 U-Net 的对抗网络(S2SGAN),无需旅行主体(配对数据)
跨站点。为了进一步提高效率并在整个多模型中学习更鲁棒的特征表示
站点数据,我们建议扩展 S2SGAN,以使用单个站点共同协调所有多站点皮质属性图
发电机。在目标 3 中,利用协调地图的信息丰富的增长模式和梯度信息
在目标 2 中,我们将利用多视图来发现不同的皮质区域
以数据驱动的方式进行非负矩阵分解,无需对参数做任何假设
增长模式的形式。我们所有处理过的数据、结果、计算工具和源代码都将被存放
进入 NDA、NITRC 和 GitHub,显着加快早期大脑发育研究的步伐。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Li其他文献
Gang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Li', 18)}}的其他基金
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10346720 - 财政年份:2022
- 资助金额:
$ 62.7万 - 项目类别:
Developing an Individualized Deep Connectome Framework for ADRD Analysis
开发用于 ADRD 分析的个性化深度连接组框架
- 批准号:
10515550 - 财政年份:2022
- 资助金额:
$ 62.7万 - 项目类别:
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10571842 - 财政年份:2022
- 资助金额:
$ 62.7万 - 项目类别:
Infant Functional Connectome Fingerprinting based on Deep Learning
基于深度学习的婴儿功能连接组指纹图谱
- 批准号:
10288361 - 财政年份:2021
- 资助金额:
$ 62.7万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
9906913 - 财政年份:2018
- 资助金额:
$ 62.7万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9755508 - 财政年份:2018
- 资助金额:
$ 62.7万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
10396127 - 财政年份:2018
- 资助金额:
$ 62.7万 - 项目类别:
Using High Throughput Approach to Identify/Characterize Functional Variants on MS
使用高通量方法在 MS 上识别/表征功能变异
- 批准号:
9670361 - 财政年份:2018
- 资助金额:
$ 62.7万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10407000 - 财政年份:2018
- 资助金额:
$ 62.7万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10162317 - 财政年份:2018
- 资助金额:
$ 62.7万 - 项目类别:
相似国自然基金
内蒙古自治区5岁以下儿童死亡状况研究
- 批准号:81760591
- 批准年份:2017
- 资助金额:11.0 万元
- 项目类别:地区科学基金项目
基于LiST模型的西藏自治区孕产妇和儿童健康干预效果预测及策略研究
- 批准号:71603007
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
3-5岁幼儿说谎行为的发展及其影响因素的追踪研究
- 批准号:31400892
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
云南省汉族和彝族50岁以上人群原发性青光眼5年随访研究
- 批准号:81371016
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
5-6岁儿童被动吸烟随机对照干预研究
- 批准号:81273089
- 批准年份:2012
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Clinical Trial Readiness for Children 0-5 years with Congenital Muscular Dystrophy Secondary to LAMA2 Mutations
0-5 岁 LAMA2 突变继发先天性肌营养不良症儿童的临床试验准备情况
- 批准号:
10686586 - 财政年份:2023
- 资助金额:
$ 62.7万 - 项目类别:
Infant diet and cardiometabolic risk among children born preterm
早产儿的婴儿饮食和心脏代谢风险
- 批准号:
10716587 - 财政年份:2023
- 资助金额:
$ 62.7万 - 项目类别:
Undernutrition, microbiota maturation, and adaptive immunity in Bangladeshi children
孟加拉国儿童的营养不良、微生物群成熟和适应性免疫
- 批准号:
10718949 - 财政年份:2023
- 资助金额:
$ 62.7万 - 项目类别:
Neurocognitive Mechanisms Linking Early Parent-Child Relationship Quality to Transdiagnostic Psychopathology at School Age
将早期亲子关系质量与学龄跨诊断精神病理学联系起来的神经认知机制
- 批准号:
10607038 - 财政年份:2023
- 资助金额:
$ 62.7万 - 项目类别:
Food and Non-Food Self-Regulation in Children's Obesity Risk: A Biopsychosocial Perspective
儿童肥胖风险中的食品和非食品自我调节:生物心理社会视角
- 批准号:
10561810 - 财政年份:2023
- 资助金额:
$ 62.7万 - 项目类别: