Bayesian Mortality Estimation from Disparate Data Sources
来自不同数据源的贝叶斯死亡率估计
基本信息
- 批准号:10717177
- 负责人:
- 金额:$ 32.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-06 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdoptedAgeAreaBayesian ModelingBenchmarkingBirthBirth HistoryCOVID-19 pandemicCaringCensusesCessation of lifeChildChild MortalityChildhoodCollaborationsComplexComputer softwareCountryDataData CollectionData ReportingData SourcesDecision MakingDedicationsDevelopmentDiseaseDisparateDisparityElementsEventExcess MortalityExerciseGeographyGoalsGuidelinesHealthHouseholdIndividualInterventionLinkManuscriptsMeasuresMethodologyMethodsModelingMothersNeonatal MortalityPaperPeer ReviewPopulationProceduresProcessProductionPublic HealthPublishingReportingReproducibilityReproducibility of ResultsResearch PersonnelSoftware ValidationStatistical MethodsStratificationSurveysSustainable DevelopmentSystemTimeTrainingTranslationsTwitterUncertaintyUnited NationsUpdateWalkingWorkWorld Health Organizationcomputing resourcesdata modelingdata streamsdesigndiscrete dataflexibilityglobal healthinterestlow and middle-income countriesmortalitynew pandemicnovel strategiesopen sourcepandemic diseasepredictive modelingpublic health interventionresponsesexsuccesstemporal measurementtheoriesuser friendly softwareweb site
项目摘要
Project Summary: The goal of the proposal is to develop a Bayesian statistical framework for mortality estimation
from disparate data sources. Using this framework we will produce a suite of principled methods to be used in
those situations in which vital registration data are lacking. We will emphasize efficient implementations that
can be used by researchers in low- and middle-income countries (LMICs), who may have limited computing
resources. In Aim 1, we will develop guidelines on a general statistical framework for mortality estimation. Aim 2
will focus on subnational child mortality with particular emphasis on the under-5 mortality rate (U5MR), which is
a key indicator of the health of a population, and the neonatal mortality rate (NMR). Excess mortality estimation
during the Covid-19 pandemic, by month, at the country level, will be the subject of Aim 3. We will disseminate
results widely and provide software and training in the developed methods.
We will produce yearly estimates of U5MR and NMR at the geographical level at which health decisions are
made. To achieve this goal, household survey, VR and census data must be combined in a coherent way. Census
data on child mortality typically provide summary birth history (SBH) data, which consist of mother's age along
with the number of children born and the number who died, but without the times at which those events occurred.
We will develop a framework for combining the different data sources, which will entail dealing with the design
issues in the household survey, accounting for unknown birth and death times in the SBH data, and estimating the
completeness of the VR data (births and deaths). We will also incorporate demographic information via a form
of Bayesian benchmarking. Effective and appropriate use of the models will require rigorous model assessment,
careful interpretation of results and meaningful and informative graphical summaries.
We will develop robust models to evaluate the excess mortality, i.e., the difference between the deaths ob-
served in the pandemic and those expected if the pandemic had not occurred. We will model the expected deaths,
and incorporate the uncertainty in this endeavor in the excess mortality calculation. Completeness of mortality
counts, that is, under-reporting and delays in reporting, will also be considered. For countries who do not report
deaths in the pandemic, we must predict the mortality count using available country-level covariate data, and we
will adopt flexible yet interpretable regression forms, and acknowledge uncertainty in the covariate data.
We will produce user-friendly software for the methods, along with vignettes and training materials, including
short courses. The endpoint is to have software that can be used by researchers in LMICs. All aims will be
informed by the collaborative team's close links with the United Nations Inter-agency Group for Child Mortality
Estimation (for the subnational child mortality aim) and the World Health Organization Division of Data, Analytics
and Delivery for Impact (for the excess mortality aim). Together we will develop methods to highlight disparities
and inform interventions.
项目摘要:该提案的目标是开发用于死亡率估计的贝叶斯统计框架
使用这个框架,我们将产生一套原则性的方法来使用。
在缺乏重要登记数据的情况下,我们将强调有效的实施。
可供低收入和中等收入国家 (LMIC) 的研究人员使用,他们的计算能力可能有限
在目标 1 中,我们将为目标 2 制定一个通用统计框架。
将重点关注地方儿童死亡率,特别是 5 岁以下儿童死亡率 (U5MR),
人口健康的关键指标以及新生儿死亡率(NMR)估计。
在 Covid-19 大流行期间,在国家一级按月将成为目标 3 的主题。我们将传播
结果广泛,并提供所开发方法的软件和培训。
我们将在做出健康决策的地理层面上对 U5MR 和 NMR 进行年度估计
为了实现这一目标,家庭调查、VR 和人口普查数据必须以一致的方式结合起来。
儿童死亡率数据通常提供出生史摘要 (SBH) 数据,其中包括母亲的年龄
包括出生的儿童数量和死亡的人数,但没有这些事件发生的时间。
我们将开发一个框架来组合不同的数据源,这将需要处理设计
家庭调查中的问题,解释了 SBH 数据中未知的出生和死亡时间,并估计
VR 数据(出生和死亡)的完整性我们还将通过表格纳入人口统计信息。
贝叶斯基准测试的有效和适当使用需要严格的模型评估,
仔细解释结果以及有意义且信息丰富的图形摘要。
我们将开发稳健的模型来评估超额死亡率,即死亡人数之间的差异
我们将对预期死亡人数进行建模,
并将这一努力的不确定性纳入死亡率的完整性计算中。
对于不报告的国家,也将考虑报告不足和延迟报告的情况。
大流行中的死亡人数,我们必须使用现有的国家级协变量数据来预测死亡率,并且我们
将采用灵活但可解释的回归形式,并承认协变量数据的不确定性。
我们将为这些方法制作用户友好的软件,以及插图和培训材料,包括
短期课程的终点是拥有可供中低收入国家研究人员使用的软件。
协作小组与联合国儿童死亡率问题机构间小组的密切联系提供了信息
估计(国家以下儿童死亡率目标)和世界卫生组织数据、分析司
我们将共同开发强调差异的方法。
并告知干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN C WAKEFIELD其他文献
JONATHAN C WAKEFIELD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN C WAKEFIELD', 18)}}的其他基金
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
- 批准号:
7487082 - 财政年份:2005
- 资助金额:
$ 32.31万 - 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
- 批准号:
7125963 - 财政年份:2005
- 资助金额:
$ 32.31万 - 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
- 批准号:
7269420 - 财政年份:2005
- 资助金额:
$ 32.31万 - 项目类别:
SPATIO-TEMPORAL EPIDEMIOLOGY: METHODS AND APPLICATIONS
时空流行病学:方法和应用
- 批准号:
8758573 - 财政年份:2005
- 资助金额:
$ 32.31万 - 项目类别:
SPATIO-TEMPORAL EPIDEMIOLOGY: METHODS AND APPLICATIONS
时空流行病学:方法和应用
- 批准号:
9144720 - 财政年份:2005
- 资助金额:
$ 32.31万 - 项目类别:
Spatio-Temporal Epidemiology: Methods and Applications
时空流行病学:方法与应用
- 批准号:
6927704 - 财政年份:2005
- 资助金额:
$ 32.31万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Multi-level interventions for addressing tobacco cessation and SDOH in Community Health Centers (CHCs)
解决社区卫生中心 (CHC) 戒烟和 SDOH 问题的多层次干预措施
- 批准号:
10661440 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Spatially Resolved CRISPR Genomics for Dissecting Testicular Gene Functions at Scale
空间分辨 CRISPR 基因组学用于大规模剖析睾丸基因功能
- 批准号:
10573701 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Impact of Structural Racism on Racial Disparities in Cognitive Impairment
结构性种族主义对认知障碍种族差异的影响
- 批准号:
10572864 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Immune-epithelial progenitor interactions drive age-associated dysplastic lung repair post viral pneumonia
免疫上皮祖细胞相互作用驱动病毒性肺炎后与年龄相关的发育不良肺修复
- 批准号:
10751699 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Policy options to improve access to memory care for disadvantaged individuals who are dually eligible for Medicare and Medicaid
改善具有医疗保险和医疗补助双重资格的弱势群体获得记忆护理的政策选择
- 批准号:
10729830 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别: