Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
基本信息
- 批准号:10571842
- 负责人:
- 金额:$ 54.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease pathologyAnatomyAtlasesBiologyBrainBrain MappingClassificationClinicalComputational TechniqueDataData SetData SourcesDementiaDevelopmentDisease ProgressionEarly DiagnosisFunctional disorderHeterogeneityHourHumanImageImpairmentIndividualMagnetic Resonance ImagingMapsMeasuresMethodologyMethodsModelingMonitorMultimodal ImagingNatureNeurodegenerative DisordersPathway interactionsPatientsPatternPhasePopulationProcessPropertySeriesShapesStructureSurfaceSystemTestingTimeTreesWorkbiobankbrain basedcohortcomputerized toolsconnectomecostdeep learningdisease classificationflexibilityimage registrationimaging biomarkerimaging studyimprovedindividual variationinter-individual variationlarge scale datamultimodalityneural networkneuroimagingnormal agingpersonalized diagnosticspersonalized predictionspre-clinicalresponsetooltrend
项目摘要
Project Summary
Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disorder, not only in pathophysiology, but also
at different disease progression stages. Despite numerous studies that have investigated the clinical utility of
magnetic resonance imaging (MRI) based biomarkers in characterizing AD stages from asymptomatic to mildly
symptomatic to dementia, making a personalized precision prediction and early diagnosis of AD is still
challenging. Existing imaging biomarkers are limited in representing significant heterogeneity across different
individuals and at different clinical stages. This challenge originates from the lack of reliable brain landmarks that
can simultaneously characterize and represent robust population correspondences and individual variation
during normal aging and AD progression. In response, this project aims to: 1) Identify a set of brain anchor-
nodes as population landmarks based on both group-wise consistent patterns and individualized anatomical and
connectivity properties during normal aging and AD progression among massive, publicly available neuroimaging
data sources; 2) Develop an efficient individualized shape transformation approach based on deep learning to
map population anchor-nodes to individual brains by flexibly leveraging multimodal individual features; and 3)
Construct a progression tree using anchor-nodes derived brain measures to unveil and represent the wide
spectrum of AD development. Individual subjects can thus be projected to the tree structure to effectively and
conveniently access their clinical status and predict the trend of AD progression. We will test our new frameworks
on four large independent aging/AD cohorts including HCP-Aging, UK Biobank, ADNI and the latest stage of
Open Access Series of Imaging Studies (OASIS-3), and freely release our computational tools and processed
data to the public.
项目概要
阿尔茨海默病(AD)是一种异质性神经退行性疾病,不仅在病理生理学上,而且在
尽管有大量研究调查了不同疾病进展阶段的临床效用。
基于磁共振成像 (MRI) 的生物标志物用于表征从无症状到轻度的 AD 阶段
针对痴呆症的症状,对 AD 进行个性化精准预测和早期诊断仍然是
现有的成像生物标志物在代表不同的显着异质性方面受到限制。
这一挑战源于缺乏可靠的大脑标志。
可以同时表征和表示稳健的群体对应关系和个体差异
作为回应,该项目旨在:1)确定一组大脑锚点。
基于分组一致模式和个性化解剖学和
正常衰老和 AD 进展过程中大量公开神经影像的连接特性
2)基于深度学习开发高效的个性化形状变换方法
通过灵活利用多模态个体特征将群体锚节点映射到个体大脑;3)
使用锚节点衍生的大脑测量构建一个进展树来揭示和表示广泛的
AD 发展的范围因此可以有效地投影到树结构。
方便地访问他们的临床状态并预测 AD 进展的趋势我们将测试我们的新框架。
四个大型独立老龄化/AD 队列,包括 HCP-Aging、UK Biobank、ADNI 和最新阶段的
开放获取成像研究系列(OASIS-3),并免费发布我们的计算工具和处理
向公众提供数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Li其他文献
Gang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Li', 18)}}的其他基金
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10346720 - 财政年份:2022
- 资助金额:
$ 54.68万 - 项目类别:
Developing an Individualized Deep Connectome Framework for ADRD Analysis
开发用于 ADRD 分析的个性化深度连接组框架
- 批准号:
10515550 - 财政年份:2022
- 资助金额:
$ 54.68万 - 项目类别:
Infant Functional Connectome Fingerprinting based on Deep Learning
基于深度学习的婴儿功能连接组指纹图谱
- 批准号:
10288361 - 财政年份:2021
- 资助金额:
$ 54.68万 - 项目类别:
Harmonizing and Archiving of Large-scale Infant Neuroimaging Data
大规模婴儿神经影像数据的协调和归档
- 批准号:
10189251 - 财政年份:2021
- 资助金额:
$ 54.68万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
9906913 - 财政年份:2018
- 资助金额:
$ 54.68万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9755508 - 财政年份:2018
- 资助金额:
$ 54.68万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
10396127 - 财政年份:2018
- 资助金额:
$ 54.68万 - 项目类别:
Using High Throughput Approach to Identify/Characterize Functional Variants on MS
使用高通量方法在 MS 上识别/表征功能变异
- 批准号:
9670361 - 财政年份:2018
- 资助金额:
$ 54.68万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10162317 - 财政年份:2018
- 资助金额:
$ 54.68万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10407000 - 财政年份:2018
- 资助金额:
$ 54.68万 - 项目类别:
相似国自然基金
阿尔茨海默病高危风险基因加速认知老化的脑神经机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
β-羟丁酸通过hnRNP A1调控Oct4抑制星形胶质细胞衰老影响AD的发生
- 批准号:31900807
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
胰岛素抵抗导致神经元衰老的分子机制及在老年痴呆疾病中的作用研究
- 批准号:91849205
- 批准年份:2018
- 资助金额:200.0 万元
- 项目类别:重大研究计划
载脂蛋白E4基因加速认知老化的脑神经机制研究
- 批准号:31700997
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
慢性睡眠障碍引起阿尔茨海默病tau蛋白病理变化及其表观遗传学机制研究
- 批准号:81771521
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 54.68万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 54.68万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 54.68万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别: