Self-Locomotive Antimicrobial Micro-Robot (SLAM) Enhancing Biofilm-Infected Wound Healing
自移动抗菌微型机器人 (SLAM) 增强生物膜感染伤口愈合
基本信息
- 批准号:10612835
- 负责人:
- 金额:$ 42.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAgingAntibiotic ResistanceAntibioticsAntimicrobial ResistanceBacteriaBloodCD34 geneCell WallCell secretionCellsCessation of lifeChronicClinicalCollaborationsCollagenComplexCytoprotectionDebridementDepositionDermatologistDiatomsDiseaseDisinfectantsDisinfectionEdemaEnzymesExcisionExhibitsFGF2 geneFemaleFibroblast Growth FactorFractureGelatinase BGoalsGrowthGrowth FactorHematopoietic Stem Cell MobilizationHuman bodyHydrogen PeroxideImmune systemImpaired wound healingInfectionInflammationInvadedIrrigationLiquid substanceLocomotionMMP9 geneMalignant - descriptorMatrix MetalloproteinasesMetabolicMetalloproteasesMethodsMicrobial BiofilmsMicrobubblesModelingMonitorMulti-modal optical imagingMusOxygenPTPRC genePatientsPolymersPorosityProceduresPseudomonas aeruginosaRecombinantsRecurrenceRegenerative MedicineResidual stateSchemeSelf EfficacyServicesSiteSkinStructureSurveysThickTimeTissuesToxic effectTranslatingUnited StatesUnited States National Institutes of HealthVancomycinVascularizationWaterWound Infectionantimicrobialantimicrobial drugbioimagingcostdisabilityefficacy evaluationepithelial woundextracellularimaging systemimprovedinhibitorinnovationinventionkeratinocyte growth factormalemechanical energymethicillin resistant Staphylococcus aureusmicrobialmicrorobotnanosheetneovascularizationpreventskin regenerationstemstem cellssuccesstraumatic eventtreatment durationwoundwound biofilmwound healingwound treatment
项目摘要
Project Summary Biofilm, a protective extracellular-polymeric substance that surrounds bacterial colonies, is
associated with more than 80% of microbial infections. In the United States, the management cost for biofilm-
associated infections reaches 94 billion US dollars and is responsible for 0.5 million deaths annually. In particular,
millions of wound patients suffer from biofilm-associated infections that lead to persistent inflammation and
edema, and ultimately hinder wound healing. Biofilm bacteria are 1,000 times more resistant to antibiotics than
free-floating bacteria. In a clinical setting, it is common to remove biofilm from the wound with debridement or
enzymes. However, these methods do not remove biofilm in space deep in the wounded tissue, thus allowing
biofilm recurrence. To this end, we recently invented a self-locomotive, antimicrobial micro-robot (SLAM) that
can invade and remove biofilm. The SLAM is prepared by activating diatom biosilica doped with MnO2
nanocatalysts (MnO2-diatom) to generate oxygen microbubbles using a 3 % hydrogen peroxide solution. The
activated MnO2-diatoms propel themselves to enter the biofilm. Within the biofilm, the activated MnO2-diatoms
continue to generate microbubbles that fuse and produce mechanical energy high enough to fracture biofilm. It
takes 10 minutes for the activated MnO2-diatoms to remove more than 99.9 % of 0.8 mm-thick P. aeruginosa
biofilm with similar depth to full-thickness skin. No adverse toxic effects are observed after cleaning. With this success,
our overall goals are to improve biofilm removal from the infected wound using SLAM and, in turn, to promote
skin regeneration in the wound. We hypothesize that the activated MnO2-diatoms would detach biofilm from
wounds and, in turn, increase access of antibiotics to residual biofilm bacteria. The subsequently enhanced
wound disinfection would serve to improve the efficacy of regenerative medicine to skin regeneration in wounds.
We will examine this hypothesis by using the vancomycin and a pair of keratinocyte growth factor (KGF)-2 and fibroblast
growth factor (FGF)-2 as a model antibiotic and regenerative medicine, respectively. Our specific aims are to: (1)
evaluate the efficacy of activated MnO2-diatoms to remove biofilm in wounds, (2) examine if activated MnO2-
diatoms improve the efficacy of vancomycin to prevent biofilm re-growth, and (3) investigate the extent that activated
MnO2-diatoms increase the KGF2/FGF2 efficacy in stimulating skin regeneration. We will conduct each aim study using
the P. aeruginosa or methicillin-resistant S. aureus biofilm-infected excisional wound of male and female CD1
mice. We will assess the biofilm removal and skin regeneration in wounds using a multimodal optical imaging
system through collaboration with the Boppart group with expertise in bioimaging. We will also determine the matrix
metalloproteinase-9 and tissue inhibitor to metalloproteinase levels in the wound fluid, CD34+/CD45- stem cell
mobilization, pro-inflammation and edema, and minimal toxicity of SLAM under guidance by Dr. Neitzel, a dermatologist.
Overall, this proposed study will significantly impact efforts to treat non-healing, biofilm-infected wounds using
innovative SLAMs. In the end, this study will save wound patients from disability and death.
项目摘要 生物膜是一种围绕细菌菌落的保护性细胞外聚合物物质,
80%以上的微生物感染与此有关。在美国,生物膜的管理成本
相关感染每年达到 940 亿美元,导致 50 万人死亡。尤其,
数以百万计的伤口患者患有生物膜相关感染,导致持续炎症和
水肿,最终阻碍伤口愈合。生物膜细菌对抗生素的抵抗力比细菌高 1,000 倍
自由漂浮的细菌。在临床环境中,通常通过清创或清除伤口上的生物膜
酶。然而,这些方法并不能去除受伤组织深处的生物膜,因此允许
生物膜复发。为此,我们最近发明了一种自移动抗菌微型机器人(SLAM)
可以侵入并去除生物膜。 SLAM是通过活化掺杂MnO2的硅藻生物硅制备的
纳米催化剂(MnO2-硅藻)使用 3% 的过氧化氢溶液产生氧气微泡。这
活化的二氧化锰硅藻推动自身进入生物膜。在生物膜内,活化的 MnO2-硅藻
继续产生微泡,微泡融合并产生足够高的机械能以破坏生物膜。它
活化的 MnO2-硅藻需要 10 分钟即可去除 99.9% 以上的 0.8 毫米厚的铜绿假单胞菌
生物膜的深度与全层皮肤相似。清洁后未观察到不良毒性作用。凭借这次成功,
我们的总体目标是使用 SLAM 改善受感染伤口上生物膜的去除,进而促进
伤口处的皮肤再生。我们假设活化的 MnO2-硅藻会使生物膜从
伤口,进而增加抗生素接触残留生物膜细菌的机会。随后增强的
伤口消毒将有助于提高再生医学对伤口皮肤再生的功效。
我们将使用万古霉素和一对角质形成细胞生长因子 (KGF)-2 以及成纤维细胞来检验这一假设
生长因子(FGF)-2分别作为模型抗生素和再生医学。我们的具体目标是:(1)
评估活化 MnO2-硅藻去除伤口生物膜的功效,(2) 检查活化 MnO2- 是否
硅藻提高万古霉素防止生物膜重新生长的功效,并且(3)研究激活的程度
MnO2-硅藻增加 KGF2/FGF2 刺激皮肤再生的功效。我们将使用以下方法进行每项目标研究
男性和女性 CD1 的铜绿假单胞菌或耐甲氧西林金黄色葡萄球菌生物膜感染的切除伤口
老鼠。我们将使用多模态光学成像评估伤口中生物膜的去除和皮肤再生
通过与拥有生物成像专业知识的 Boppart 团队合作开发系统。我们还将确定矩阵
伤口液中金属蛋白酶 9 和金属蛋白酶水平的组织抑制剂、CD34+/CD45- 干细胞
在皮肤科医生 Neitzel 博士的指导下,SLAM 具有动员、促炎和水肿以及最小毒性等特点。
总体而言,这项拟议的研究将显着影响使用药物治疗不愈合、生物膜感染伤口的努力
创新的 SLAM。最终,这项研究将使伤口患者免于残疾和死亡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyunjoon Kong其他文献
Hyunjoon Kong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyunjoon Kong', 18)}}的其他基金
Self-Locomotive Antimicrobial Micro-Robot (SLAM) Enhancing Biofilm-Infected Wound Healing
自移动抗菌微型机器人 (SLAM) 增强生物膜感染伤口愈合
- 批准号:
10366359 - 财政年份:2022
- 资助金额:
$ 42.52万 - 项目类别:
Modular Assembly of 3T (Targeting, Tracking and Treating) Nanocells for Vascular
用于血管的 3T(靶向、跟踪和治疗)纳米细胞的模块化组装
- 批准号:
8161467 - 财政年份:2011
- 资助金额:
$ 42.52万 - 项目类别:
Nanocells for vascular normalization therapies
用于血管正常化治疗的纳米细胞
- 批准号:
8306701 - 财政年份:2011
- 资助金额:
$ 42.52万 - 项目类别:
Nanocells for vascular normalization therapies
用于血管正常化治疗的纳米细胞
- 批准号:
8461633 - 财政年份:2011
- 资助金额:
$ 42.52万 - 项目类别:
Nano-sized Cell Guidance System for Ischemic Tissue Repair
用于修复缺血组织的纳米细胞引导系统
- 批准号:
7713070 - 财政年份:2009
- 资助金额:
$ 42.52万 - 项目类别:
Nano-sized Cell Guidance System for Ischemic Tissue Repair
用于修复缺血组织的纳米细胞引导系统
- 批准号:
7898525 - 财政年份:2009
- 资助金额:
$ 42.52万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
KIAA1429介导MFAP4-m6A甲基化修饰在紫外线诱导皮肤光老化中的作用和机制研究
- 批准号:82373461
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Engineering next generation probiotics for delivery of therapeutics
设计下一代益生菌以提供治疗
- 批准号:
10697438 - 财政年份:2023
- 资助金额:
$ 42.52万 - 项目类别:
Water Emergency Team (WET): Community-Driven Rapid Response Team to Evaluate Antibiotic-Resistant Bacteria Exposures and Household Environmental Health Risks from Sewer Overflows and Basement Flooding
水应急小组 (WET):社区驱动的快速响应小组,评估下水道溢出和地下室洪水导致的抗生素耐药细菌暴露和家庭环境健康风险
- 批准号:
10686675 - 财政年份:2023
- 资助金额:
$ 42.52万 - 项目类别:
Repeated Transurethral Interventions and Progressive Urethral Stricture Disease: Elucidation of Mechanisms and Novel Interventional Strategies
反复经尿道干预和进行性尿道狭窄疾病:机制阐明和新的干预策略
- 批准号:
10581375 - 财政年份:2022
- 资助金额:
$ 42.52万 - 项目类别:
Formulation of a prophylactic vaccine against Pseudomonas aeruginosa
铜绿假单胞菌预防性疫苗的配制
- 批准号:
10592374 - 财政年份:2022
- 资助金额:
$ 42.52万 - 项目类别: