Nano-sized Cell Guidance System for Ischemic Tissue Repair
用于修复缺血组织的纳米细胞引导系统
基本信息
- 批准号:7713070
- 负责人:
- 金额:$ 21.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAffinityAmputationAtherosclerosisBindingBlood VesselsCUL5 geneCardiomyopathiesCardiovascular DiseasesCardiovascular systemCell AdhesionCell SeparationCell TransplantationCell TransplantsCellsChronic DiseaseClinicalClinical TreatmentClinical TrialsDiseaseEndothelial CellsEndotheliumEpitopesEvaluationExpeditionsFamily suidaeFluorescence Resonance Energy TransferGlycerolGoalsGrowthGrowth FactorHeart failureHindlimbImmunodeficient MouseIn VitroInflammatoryInjection of therapeutic agentInjuryIschemiaLimb structureLinkMedicineMolecular AnalysisMyocardialNecrosisOligopeptidesOperative Surgical ProceduresPatientsPeptidesPeripheralPharmaceutical PreparationsPoly (RGD)RGD (sequence)ResearchResearch PersonnelSignal TransductionStem cellsStrokeStructureSystemTechniquesTherapeuticThromboembolismTissue EngineeringTissuesTranslatingTranslationsTransplantationTreatment EfficacyUmbilical Cord BloodUnited StatesVascular Cell Adhesion Molecule-1Wound Healingangiogenesisbaseblood perfusioncytokinedesignimprovedin vivoinjuredinterdisciplinary collaborationmeetingsnanosizedneovascularizationpre-clinicalpublic health relevanceregenerativerepairedrestorationstemvasculogenesis
项目摘要
DESCRIPTION (provided by applicant): Ischemia in myocardial and peripheral tissues is a leading cause of heart failure and tissue necrosis in the United States. Ischemic diseases are clinically treated with drug administration and surgery, which still meet many challenges for treatment on a permanent basis. Recently, revascularization therapy to rebuild the vascular network of ischemic tissue via angiogenesis, vasculogenesis or both is being extensively studied to restore blood perfusion in various tissues. A variety of stem and progenitor cells are promising revascularization medicines in conjunction with several angiogenic cytokines and growth factors. Commonly, these cells are transplanted via intracoronary injection, but the therapeutic efficacy of transplanted cells is greatly reduced by a significant loss of cells due to the absence of the signals to guide the cells to the injured endothelium. The objectives of this proposed study are to develop a nano-sized cell guidance molecule and attach it to the transplanted cells, so the transplanted cells can pinpoint the injured endothelium and subsequently improve blood perfusion of ischemic tissue. We hypothesize that a hyper-branched poly(glycerol) linked with both epitopes binding with transplanted cells and those binding with vascular cell adhesion molecules (VCAM)-1 will precisely guide transplanted cells to the injured endothelium because the endothelial injury stimulates endothelial cells to over-express VACM-1. Ultimately, this tuning of cell guidance will significantly improve restoration of blood perfusion in the ischemic tissue. We will examine this hypothesis using endothelial progenitor cells (EPCs) derived from a porcine cord blood. The oligopeptide containing RGD sequence (RGD peptide) will be used as the EPC-binding epitope and that containing VHSPNKK sequence (VHSPNKK peptide) will be used as the VCAM1- binding epitope. The oligopeptide structure will be varied to improve the binding affinity to cells and VCAM-1. These two oligopeptides will be chemically linked to the poly(glycerol). The degree of oligopeptides substitution to poly(glycerol) will be further optimized with in vitro analysis. Specifically, we will use a fluorescence resonance energy transfer (FRET) technique we previously developed to quantify the number of poly(glycerol) bound to EPCs. We will complete this proposed study by first functionalizing poly(glycerol) with RGD peptides [RGD- poly(glycerol)] and analyzing the amount of poly(glycerol) bound with EPCs (Aim 1), secondly modifying RGD-poly(glycerol) with VHSPNKK peptides [RGD-poly(glycerol)-VHSPNKK] and analyzing its ability to guide EPCs to the synthetic endothelium (Aim 2) and finally demonstrate the function of bioactive poly(glycerol) in vivo using the immunodeficient mouse with an ischemic hindlimb (Aim 3). This study will be performed through the interdisciplinary collaboration between a tissue engineer (Kong, investigator), chemist (Zimmerman) and biologist (Schook). Kong and Zimmerman's groups are responsible for the synthesis of bioactive poly(glycerol) and evaluation of its ability to enhance the transplanted cell adhesion to the target ischemic tissue in vitro and in vivo. The cell isolation from a cord blood and characterization will be evaluated by the Schook group. We believe that the successful completion of this proposed study will significantly minimize the loss of transplanted cells and improve the therapeutic potency of EPCs for repairing ischemic tissue. Results from our in vitro and in vivo studies will be readily translated into the large scale preclinical and clinical trials, and aid the expedition of cell-based neovascularization therapies to the clinical setting. Finally, this design strategy of a cell guidance system and quantitative analysis of the molecular binding with cells and target tissue will be widely applicable to a broad array of stem and progenitor cells for the treatment of many diseases.
PUBLIC HEALTH RELEVANCE: The successful completion of this proposed study will create a precision cell guidance system that will greatly improve the regenerative efficacy of therapeutic cells and expedite the use of cells in clinical treatment of ischemic disease. Specifically, the through in vitro and in vivo analysis of cell guidance system will expedite the translation of the results of this study into the clinical trials. In the end, this study will aid saving a number of patients who suffer from the ischemic disorders of myocardial and peripheral tissues.
描述(由申请人提供):在美国,心肌和外周组织的缺血是心力衰竭和组织坏死的主要原因。缺血性疾病临床上主要通过药物治疗和手术治疗,但永久治疗仍面临许多挑战。最近,通过血管生成、血管生成或两者来重建缺血组织的血管网络的血运重建疗法正在被广泛研究,以恢复各种组织中的血液灌注。多种干细胞和祖细胞与几种血管生成细胞因子和生长因子一起是有前途的血管重建药物。通常,这些细胞通过冠状动脉内注射进行移植,但由于缺乏引导细胞到达受损内皮的信号,导致细胞大量损失,从而大大降低了移植细胞的治疗效果。这项研究的目的是开发一种纳米尺寸的细胞引导分子并将其附着到移植细胞上,以便移植细胞能够精确定位受损的内皮,从而改善缺血组织的血液灌注。我们假设,与移植细胞结合的表位和与血管细胞粘附分子(VCAM)-1结合的表位连接的超支化聚(甘油)将精确引导移植细胞到达受损的内皮,因为内皮损伤刺激内皮细胞过度生长。 -表达VACM-1。最终,这种细胞引导的调整将显着改善缺血组织中血液灌注的恢复。我们将使用源自猪脐带血的内皮祖细胞(EPC)来检验这一假设。含有RGD序列的寡肽(RGD肽)将用作EPC结合表位,含有VHSPNKK序列的寡肽(VHSPNKK肽)将用作VCAM1结合表位。寡肽结构将发生变化,以提高与细胞和 VCAM-1 的结合亲和力。这两种寡肽将与聚(甘油)化学连接。寡肽对聚甘油的取代程度将通过体外分析进一步优化。具体来说,我们将使用我们之前开发的荧光共振能量转移 (FRET) 技术来量化与 EPC 结合的聚甘油的数量。我们将首先用 RGD 肽 [RGD-聚(甘油)] 功能化聚(甘油)并分析与 EPC 结合的聚(甘油)量(目标 1),然后用VHSPNKK 肽 [RGD-聚(甘油)-VHSPNKK] 并分析其引导 EPC 到达合成内皮的能力(目标2) 最后使用后肢缺血的免疫缺陷小鼠证明生物活性聚甘油在体内的功能(目标 3)。这项研究将通过组织工程师(Kong,研究员)、化学家(Zimmerman)和生物学家(Schook)之间的跨学科合作进行。 Kong和Zimmerman的研究小组负责生物活性聚甘油的合成,并评估其在体外和体内增强移植细胞与目标缺血组织粘附的能力。 Schook 小组将对脐带血中的细胞分离和表征进行评估。我们相信,这项研究的成功完成将显着减少移植细胞的损失,并提高 EPC 修复缺血组织的治疗效力。我们的体外和体内研究结果将很容易转化为大规模的临床前和临床试验,并有助于基于细胞的新生血管治疗走向临床。最后,这种细胞引导系统的设计策略以及与细胞和靶组织的分子结合的定量分析将广泛适用于各种干细胞和祖细胞,用于治疗许多疾病。
公共健康相关性:这项拟议研究的成功完成将创建一个精确的细胞引导系统,该系统将大大提高治疗细胞的再生功效,并加快细胞在缺血性疾病临床治疗中的应用。具体来说,通过细胞引导系统的体外和体内分析将加快本研究结果转化为临床试验。最终,这项研究将有助于挽救一些患有心肌和外周组织缺血性疾病的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyunjoon Kong其他文献
Hyunjoon Kong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyunjoon Kong', 18)}}的其他基金
Self-Locomotive Antimicrobial Micro-Robot (SLAM) Enhancing Biofilm-Infected Wound Healing
自移动抗菌微型机器人 (SLAM) 增强生物膜感染伤口愈合
- 批准号:
10366359 - 财政年份:2022
- 资助金额:
$ 21.98万 - 项目类别:
Self-Locomotive Antimicrobial Micro-Robot (SLAM) Enhancing Biofilm-Infected Wound Healing
自移动抗菌微型机器人 (SLAM) 增强生物膜感染伤口愈合
- 批准号:
10612835 - 财政年份:2022
- 资助金额:
$ 21.98万 - 项目类别:
Modular Assembly of 3T (Targeting, Tracking and Treating) Nanocells for Vascular
用于血管的 3T(靶向、跟踪和治疗)纳米细胞的模块化组装
- 批准号:
8161467 - 财政年份:2011
- 资助金额:
$ 21.98万 - 项目类别:
Nanocells for vascular normalization therapies
用于血管正常化治疗的纳米细胞
- 批准号:
8306701 - 财政年份:2011
- 资助金额:
$ 21.98万 - 项目类别:
Nanocells for vascular normalization therapies
用于血管正常化治疗的纳米细胞
- 批准号:
8461633 - 财政年份:2011
- 资助金额:
$ 21.98万 - 项目类别:
Nano-sized Cell Guidance System for Ischemic Tissue Repair
用于修复缺血组织的纳米细胞引导系统
- 批准号:
7898525 - 财政年份:2009
- 资助金额:
$ 21.98万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Quantifying proteins in plasma do democratize personalized medicine for patients with type 1 diabetes
量化血浆中的蛋白质确实使 1 型糖尿病患者的个性化医疗民主化
- 批准号:
10730284 - 财政年份:2023
- 资助金额:
$ 21.98万 - 项目类别:
A Novel Bone Targeted Antibiotic Therapy for the Treatment of Infected Fractures
一种治疗感染性骨折的新型骨靶向抗生素疗法
- 批准号:
10603486 - 财政年份:2023
- 资助金额:
$ 21.98万 - 项目类别:
SymHeal: A novel therapy for treating non-healing diabetic ulcers
SymHeal:一种治疗不愈合糖尿病溃疡的新疗法
- 批准号:
10602837 - 财政年份:2022
- 资助金额:
$ 21.98万 - 项目类别:
Regenerative wound dressings for accelerating diabetic wound healing
加速糖尿病伤口愈合的再生伤口敷料
- 批准号:
10518977 - 财政年份:2022
- 资助金额:
$ 21.98万 - 项目类别:
Regenerative wound dressings for accelerating diabetic wound healing
加速糖尿病伤口愈合的再生伤口敷料
- 批准号:
10684878 - 财政年份:2022
- 资助金额:
$ 21.98万 - 项目类别: