High-Density Recording and Stimulating Microelectrodes
高密度记录和刺激微电极
基本信息
- 批准号:8935966
- 负责人:
- 金额:$ 51.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsAreaBasic ScienceBenchmarkingBiocompatibleBostonBrainCaliberCarbonCellsChargeChronicClinicalDataDepositionDevelopmentDevice DesignsDevicesDiseaseElectrochemistryElectrodesElectronicsEngineeringEnvironmentFailureFiberFilmGeometryHealthHemorrhageHistologicHumanImmuneImplantImplanted ElectrodesIn VitroIndividualInjection of therapeutic agentLearningMeasurementMeasuresMechanicsMethodologyMethodsMicroelectrodesModalityMono-SNatureNeuronsNeurosciencesNeurotransmittersOxygenPacemakersPatternPerformancePhysiologicalPlasmaPolymersPrincipal InvestigatorProcessPropertyProsthesisRecords ControlsResearchResearch PersonnelResolutionSalineSeriesShapesSignal TransductionSiteStructureSurfaceTechnologyTestingTherapeuticTimeTissuesTraumaUniversitiesWidthWorkbasebrain machine interfacebrain volumeclinical applicationdensitydesignflexibilityimplantable deviceimplantationimprovedin vivoinsightmanufacturing processminimally invasivemulti-electrode arraysneural patterningneural stimulationneurotransmissionnew technologynext generationnovelpreventprototyperelating to nervous systemresponsescale uptoolvan der Waals force
项目摘要
DESCRIPTION (provided by applicant): This project seeks to develop a high density, minimally invasive electrode array for long-term recording and control of brain activity. Multielectrode arrays are an essential tool in experimental and clinical neuroscience, yet current arrays are severely limited by a mismatch between large or stiff electrodes and the fragile environment of the brain. Chronically implanted electrodes cause ongoing damage to the brain, and an active process of rejection eventually silences neural signals. Failure of chronic implants over long time-scales makes it very challenging to study the neural basis of learning. It also limits the power of brain machine interfaces for human prosthetics or neural stimulation based therapeutics. To minimize electrode damage, the size of implants must be reduced, but multichannel arrays built from the smallest electrodes are impossible to implant due to buckling of the individual fibers as they enter the brain. The proposed recording and stimulating electrode array solves this mechanical problem - achieving a high channel with sub-cellular (5 micron) microfibers distributed in three-dimensional volumes of the brain. To implant the device, individual electrodes are bundled together, strengthening each fiber through mutual support. During implant, the bundle of fibers splays apart and each fiber follows its own separate path into the brain as it is deflected by tissue inhomogeneity. This process preserves the minimally invasive properties of a single fiber. Chronic recordings from prototype designs reveal stable signals, including multiunit recordings with time-scales of months that show minimal drift in neural firing patterns. This project builds on preliminary data to engineer a robust, high channel count (64 channel polyimide) device suitable for both recording and stimulation in basic science studies and eventually for clinical applications. However, due to the minimally invasive nature of this brain interface, the device will be scalable to even higher channel counts. To advance this technology, the project involves a series of aims to optimize the electrode insulator, apply high performance tip coatings, and develop scalable manufacturing processes on a polyimide cable platform. These engineering aims are followed by rigorous benchmarks in vitro and in vivo, including 18 month tests of stimulating electrode capabilities. The project will also demonstrate the potential of the high density, minimally invasive electrode array to trigger diverse activity patterns by shaping the geometry of current flowing through small volumes of the brain.
描述(由申请人提供):该项目旨在开发一种高密度、微创电极阵列,用于长期记录和控制大脑活动。多电极阵列是实验和临床神经科学的重要工具,但目前的阵列受到严重限制。大型或僵硬的电极与长期植入的大脑脆弱环境之间的不匹配会对大脑造成持续的损害,并且主动的排斥过程最终会导致神经信号长期失效。这使得研究学习的神经基础变得非常具有挑战性,它还限制了用于人体假肢或基于神经刺激的治疗的脑机接口的能力,为了最大限度地减少电极损伤,必须减小植入物的尺寸,但要从最小的尺寸构建多通道阵列。由于单根纤维进入大脑时会发生弯曲,电极无法植入,所提出的记录和刺激电极阵列解决了这一机械问题——通过分布在三维体积中的亚细胞(5微米)微纤维实现高通道。大脑。为了植入该装置,各个电极被捆绑在一起,通过相互支撑加强每根纤维,在植入过程中,纤维束分开,每根纤维随着组织的不均匀性而偏转,沿着自己单独的路径进入大脑。原型设计的慢性记录揭示了单纤维的微创特性,包括数月时间尺度的多单元记录,显示神经放电模式的最小漂移该项目基于初步数据来设计稳健的高信号。通道数(64 通道聚酰亚胺)设备适用于基础科学研究中的记录和刺激,并最终适用于临床应用。然而,由于这种大脑接口的微创性质,该设备将可扩展到更高的通道数。该技术的项目涉及一系列目标,包括优化电极绝缘体、应用高性能尖端涂层以及在聚酰亚胺电缆平台上开发可扩展的制造工艺。这些工程目标遵循严格的体外和体内基准,包括 18 个月。测试该项目还将展示高密度、微创电极阵列通过塑造流经小体积大脑的电流的几何形状来触发不同活动模式的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy James Gardner其他文献
Timothy James Gardner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy James Gardner', 18)}}的其他基金
Corticostriatal contributions to motor exploration and reinforcement
皮质纹状体对运动探索和强化的贡献
- 批准号:
10700765 - 财政年份:2020
- 资助金额:
$ 51.61万 - 项目类别:
Corticostriatal contributions to motor exploration and reinforcement
皮质纹状体对运动探索和强化的贡献
- 批准号:
10053204 - 财政年份:2020
- 资助金额:
$ 51.61万 - 项目类别:
High-density microfiber interfaces for deep brain optical recording and stimulation
用于深部脑光学记录和刺激的高密度微纤维接口
- 批准号:
9244484 - 财政年份:2016
- 资助金额:
$ 51.61万 - 项目类别:
Tunneling microfiber electrode arrays for stable neural recording
用于稳定神经记录的隧道微纤维电极阵列
- 批准号:
8807848 - 财政年份:2014
- 资助金额:
$ 51.61万 - 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
- 批准号:
8927703 - 财政年份:2014
- 资助金额:
$ 51.61万 - 项目类别:
High-Density Recording and Stimulating Microelectrodes
高密度记录和刺激微电极
- 批准号:
8826494 - 财政年份:2014
- 资助金额:
$ 51.61万 - 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
- 批准号:
8801295 - 财政年份:2014
- 资助金额:
$ 51.61万 - 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
- 批准号:
9097816 - 财政年份:2014
- 资助金额:
$ 51.61万 - 项目类别:
相似国自然基金
臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
- 批准号:81901068
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
- 批准号:41971276
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
- 批准号:31771593
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
阿拉善荒漠啮齿动物集合群落对气候变化的响应研究
- 批准号:31772667
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 51.61万 - 项目类别:
Mechanism of epidermal coordination during development and regeneration in zebrafish
斑马鱼发育和再生过程中表皮协调机制
- 批准号:
10643060 - 财政年份:2023
- 资助金额:
$ 51.61万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 51.61万 - 项目类别:
Does prenatal immune challenge result in increased extra-axial CSF volume?
产前免疫挑战是否会导致轴外脑脊液体积增加?
- 批准号:
10647969 - 财政年份:2023
- 资助金额:
$ 51.61万 - 项目类别: