Tunneling microfiber electrode arrays for stable neural recording

用于稳定神经记录的隧道微纤维电极阵列

基本信息

项目摘要

DESCRIPTION (provided by applicant): This project seeks to develop a minimally invasive electrode array for long term recording of brain activity, with single cell resolution. Multielectrode arrays are an essential tool in experimental neuroscience, yet current arrays are severely limited by a mismatch between large or stiff electrodes and the fragile environment of the brain. Chronically implanted electrodes cause ongoing damage to the brain, and an active process of rejection eventually silences neural signals. Failure of chronic implants over long time-scales makes it very challenging to study the neural basis of learning, and prohibits the implementation of long term stable brain machine interfaces for human patients. To minimize electrode damage, the size of implants must be reduced, but multichannel arrays built from the smallest electrodes are impossible to implant due to buckling of the individual fibers. The proposed electrode array solves this mechanical problem - achieving large channel count and sub-cellular (5 micron) individual electrode size in an bundle that strengthens each fiber through mutual support. During implant, however, the bundle splays apart and each fiber follows its own separate course into the brain, preserving the minimally invasive properties of the single fibers. Chronic recordings from prototype designs reveal stable signals, including multiunit recordings with time-scales of months that show minimal drift in neural firing patterns. This project seeks t document how the electrodes interact with vasculature during implant, what damage they cause over three month time-scales, and how these factors relate to the yield and stability of chronic recordings gathered continuously for three months. The methods involve in-vivo imaging of electrode insertion, chronic recording of neural signals in freely behaving animals, and histological analysis of neuronal health and signs of local immune activation near the implant. The anticipated result is that during insertion, individual fibers travel along their own paths of least resistance into the brain, leading to reduced vascular damage. On the timescales of chronic recordings, the anticipated result is improved tissue health and stable neural signals in close proximity to the electrode. Specific variations in experiments proposed here will inform future designs that seek to scale up the number of channels in the tunneling fiber array, providing an opportunity to track large ensembles of cells simultaneously. The near term application of this project will be seen in small animal studies where it is virtually impossible t track the firing patterns of ensembles of neurons through learning with existing large-scale electrodes. Advances focussed on this deliverable are likely to also translate into more stable recordings in larger organisms, with potential direct benefits to human brain machine interfaces.
描述(由申请人提供):该项目旨在开发一种微创电极阵列,用于长期记录大脑活动,具有单细胞分辨率。 多电极阵列是实验神经科学中的重要工具,但当前的阵列受到大或僵硬电极与脆弱的大脑环境之间不匹配的严重限制。 长期植入的电极会对大脑造成持续的损伤,而主动的排斥过程最终会使神经信号沉默。 长期植入物的长期失效使得研究学习的神经基础变得非常具有挑战性,并且阻碍了为人类患者实施长期稳定的脑机接口。 为了最大限度地减少电极损坏,必须减小植入物的尺寸,但由于单个纤维的弯曲,由最小电极构建的多通道阵列无法植入。 所提出的电极阵列解决了这一机械问题 - 在束中实现大通道数和亚细胞(5微米)单个电极尺寸,通过相互支撑增强每根纤维。 然而,在植入过程中,纤维束会分开,每根纤维都沿着自己单独的路线进入大脑,从而保留了单根纤维的微创特性。 原型设计的慢性记录揭示了稳定的信号,包括时间尺度为数月的多单元记录,显示神经放电模式的漂移最小。 该项目旨在记录电极在植入过程中如何与脉管系统相互作用,它们在三个月的时间内造成什么损害,以及这些因素与连续三个月收集的慢性记录的产量和稳定性之间的关系。 这些方法包括电极插入的体内成像、自由行为动物神经信号的长期记录,以及神经元健康和植入物附近局部免疫激活迹象的组织学分析。 预期的结果是,在插入过程中,各个纤维沿着自己阻力最小的路径进入大脑,从而减少血管损伤。 在长期记录的时间尺度上,预期的结果是改善组织健康状况和靠近电极的稳定神经信号。 这里提出的实验的具体变化将为未来的设计提供信息,这些设计寻求扩大隧道光纤阵列中的通道数量,从而提供同时跟踪大型细胞群的机会。 该项目的近期应用将在小动物研究中看到,在小动物研究中,几乎不可能通过现有的大型电极学习来跟踪神经元群的放电模式。 专注于这一成果的进步也可能转化为大型生物体中更稳定的记录,对人脑机器接口具有潜在的直接好处。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A carbon-fiber electrode array for long-term neural recording.
用于长期神经记录的碳纤维电极阵列。
  • DOI:
  • 发表时间:
    2013-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guitchounts, Grigori;Markowitz, Jeffrey E;Liberti, William A;Gardner, Timothy J
  • 通讯作者:
    Gardner, Timothy J
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy James Gardner其他文献

Timothy James Gardner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy James Gardner', 18)}}的其他基金

Corticostriatal contributions to motor exploration and reinforcement
皮质纹状体对运动探索和强化的贡献
  • 批准号:
    10700765
  • 财政年份:
    2020
  • 资助金额:
    $ 20.46万
  • 项目类别:
Corticostriatal contributions to motor exploration and reinforcement
皮质纹状体对运动探索和强化的贡献
  • 批准号:
    10053204
  • 财政年份:
    2020
  • 资助金额:
    $ 20.46万
  • 项目类别:
A platform for innovation in miniature microscopy
微型显微镜创新平台
  • 批准号:
    9193420
  • 财政年份:
    2016
  • 资助金额:
    $ 20.46万
  • 项目类别:
A platform for innovation in miniature microscopy
微型显微镜创新平台
  • 批准号:
    9193420
  • 财政年份:
    2016
  • 资助金额:
    $ 20.46万
  • 项目类别:
High-density microfiber interfaces for deep brain optical recording and stimulation
用于深部脑光学记录和刺激的高密度微纤维接口
  • 批准号:
    9244484
  • 财政年份:
    2016
  • 资助金额:
    $ 20.46万
  • 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
  • 批准号:
    8927703
  • 财政年份:
    2014
  • 资助金额:
    $ 20.46万
  • 项目类别:
High-Density Recording and Stimulating Microelectrodes
高密度记录和刺激微电极
  • 批准号:
    8826494
  • 财政年份:
    2014
  • 资助金额:
    $ 20.46万
  • 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
  • 批准号:
    8801295
  • 财政年份:
    2014
  • 资助金额:
    $ 20.46万
  • 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
  • 批准号:
    9097816
  • 财政年份:
    2014
  • 资助金额:
    $ 20.46万
  • 项目类别:
High-Density Recording and Stimulating Microelectrodes
高密度记录和刺激微电极
  • 批准号:
    8935966
  • 财政年份:
    2014
  • 资助金额:
    $ 20.46万
  • 项目类别:

相似国自然基金

PGE2通过EP受体调控CCL2/CCR2信号通路轴介导截肢后爆发痛的外周机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
躯体感觉皮层神经元-小胶质细胞交互作用调控截肢后继发性疼痛的神经机制
  • 批准号:
    82171218
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
下肢截肢后外周血管阻抗改变影响心血管系统的血流动力学研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
面向膝上截肢者融合智能下肢假肢的新型外骨骼机器人关键技术研究
  • 批准号:
    61803272
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
利用靶向神经移植术重建缺失肢体运动神经信息源及机制研究
  • 批准号:
    81760416
  • 批准年份:
    2017
  • 资助金额:
    34.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Scalable Electrode Technology for High Resolution Chronic Recording of Brain
用于大脑高分辨率慢性记录的可扩展电极技术
  • 批准号:
    9769173
  • 财政年份:
    2018
  • 资助金额:
    $ 20.46万
  • 项目类别:
Scalable Electrode Technology for High Resolution Chronic Recording of Brain
用于大脑高分辨率慢性记录的可扩展电极技术
  • 批准号:
    10247033
  • 财政年份:
    2018
  • 资助金额:
    $ 20.46万
  • 项目类别:
Scalable Electrode Technology for High Resolution Chronic Recording of Brain
用于大脑高分辨率慢性记录的可扩展电极技术
  • 批准号:
    10478958
  • 财政年份:
    2018
  • 资助金额:
    $ 20.46万
  • 项目类别:
Needle-implantable sensor with multi-sensing elements for accurate glucose monitoring
具有多传感元件的针植入式传感器,用于精确监测血糖
  • 批准号:
    8903557
  • 财政年份:
    2015
  • 资助金额:
    $ 20.46万
  • 项目类别:
Preservation of Beta Cells by Glutamate Decarboxylase
谷氨酸脱羧酶保存 Beta 细胞
  • 批准号:
    7285680
  • 财政年份:
    2001
  • 资助金额:
    $ 20.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了