Single neuron mechanisms of sensory-motor learning

感觉运动学习的单神经元机制

基本信息

项目摘要

DESCRIPTION (provided by applicant): Humans maintain learned motor skills over long time-scales-for days, years or even decades. However, little is known about how the brain achieves this stability. Some studies indicate that while motor skills can remain stable for years, the individual neurons controlling them may significantly change their firing properties over the course of hours. In another view, the tuning of individual neurons is as stable as the motor skill itself. The central hypothesis of this project is that the brain encodes learned behaviors on two distinct levels - a mesoscopic level that is highly stable, and a microscopic level in which single neurons change and are influenced by the recent history of motor performance errors. In other words, the stability of a memory is rooted not in single neuron stability, but in network patterns that persist in spite of drifting activity in individual neurons. This project investigates this hypothesis by examining the neural basis of song in zebra finches. The neural circuits that underly song behavior are well defined, extensively studied, and in key respects homologous to the cortico-basal ganglia circuits that underly sensory-motor learning in mammals. For this project, the key value of the songbird is the stability of its behavior. A songbird can sing the same learned song with great precision for years providing a unique opportunity to examine how motor skills are preserved over long time-scales. Using new tools for stable recording from neurons, the project examines single neuron tuning and network patterns underlying song over time scales of days to months. To accelerate changes in the song motor program the project uses a brain-machine interface that generates brief bursts of noise during singing whenever the brain activates specific groups of neurons. Preliminary data reveals that birds can learn to reduce this interfering noise, and improve the quality of their songs by controlling the pattern of activity in the targeted neurons. Through the brain-machine interface and other experiments, significant preliminary data reveals that whereas mesoscopic dynamical patterns in premotor cortex are stable, individual neurons can drift in and out of the ensemble pattern, and adjust their activity to minimize performance errors. This project will reveal the rules of this process with cellular resolution. Insights gained from these experiments have the potential to impact human health. If single neurons drift in motor control, then knowing the rules that govern this drift will be critical to therapeutic interventions that promote recovery after injury, or create sable brain- machine interfaces for human prosthetics.
描述(由申请人提供):人类在很长一段时间内(数天、数年甚至数十年)保持习得的运动技能。然而,人们对大脑如何实现这种稳定性知之甚少。一些研究表明,虽然运动技能可以保持稳定多年,但控制它们的单个神经元可能会在几个小时内显着改变其放电特性。另一种观点认为,单个神经元的调节与运动技能本身一样稳定。该项目的中心假设是,大脑在两个不同的层面上对习得的行为进行编码——一个是高度稳定的介观层面,另一个是单一的微观层面。 神经元发生变化并受到最近运动表现错误历史的影响。换句话说,记忆的稳定性并非植根于单个神经元的稳定性,而是植根于尽管单个神经元的活动发生漂移但仍持续存在的网络模式。该项目通过检查斑胸草雀鸣叫的神经基础来研究这一假设。歌曲行为背后的神经回路已被明确定义、广泛研究,并且在关键方面与哺乳动物感觉运动学习背后的皮质基底神经节回路同源。对于这个项目,鸣鸟的关键价值是其行为的稳定性。鸣禽可以多年精确地唱同一首习得的歌曲,这提供了一个独特的机会来检查运动技能如何在长时间范围内保存。该项目使用新的神经元稳定记录工具,在数天到数月的时间尺度上检查单个神经元的调谐和歌曲背后的网络模式。为了加速歌曲运动程序的变化,该项目使用了脑机接口,只要大脑激活特定的神经元组,唱歌时就会产生短暂的噪音爆发。初步数据表明,鸟类可以学会减少这种干扰噪音,并通过控制噪音模式来提高歌曲的质量。 目标神经元的活动。通过脑机接口和其他实验,重要的初步数据表明,虽然前运动皮层的细观动力学模式是稳定的,但单个神经元可以在整体模式中漂移,并调整其活动以最大限度地减少性能误差。该项目将通过细胞分辨率揭示这一过程的规则。从这些实验中获得的见解有可能影响人类健康。如果单个神经元在运动控制中发生漂移,那么了解控制这种漂移的规则对于促进损伤后恢复或为人体假肢创建稳定的脑机接口的治疗干预至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy James Gardner其他文献

Timothy James Gardner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy James Gardner', 18)}}的其他基金

Corticostriatal contributions to motor exploration and reinforcement
皮质纹状体对运动探索和强化的贡献
  • 批准号:
    10700765
  • 财政年份:
    2020
  • 资助金额:
    $ 35.81万
  • 项目类别:
Corticostriatal contributions to motor exploration and reinforcement
皮质纹状体对运动探索和强化的贡献
  • 批准号:
    10053204
  • 财政年份:
    2020
  • 资助金额:
    $ 35.81万
  • 项目类别:
A platform for innovation in miniature microscopy
微型显微镜创新平台
  • 批准号:
    9193420
  • 财政年份:
    2016
  • 资助金额:
    $ 35.81万
  • 项目类别:
A platform for innovation in miniature microscopy
微型显微镜创新平台
  • 批准号:
    9193420
  • 财政年份:
    2016
  • 资助金额:
    $ 35.81万
  • 项目类别:
High-density microfiber interfaces for deep brain optical recording and stimulation
用于深部脑光学记录和刺激的高密度微纤维接口
  • 批准号:
    9244484
  • 财政年份:
    2016
  • 资助金额:
    $ 35.81万
  • 项目类别:
Tunneling microfiber electrode arrays for stable neural recording
用于稳定神经记录的隧道微纤维电极阵列
  • 批准号:
    8807848
  • 财政年份:
    2014
  • 资助金额:
    $ 35.81万
  • 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
  • 批准号:
    8927703
  • 财政年份:
    2014
  • 资助金额:
    $ 35.81万
  • 项目类别:
High-Density Recording and Stimulating Microelectrodes
高密度记录和刺激微电极
  • 批准号:
    8826494
  • 财政年份:
    2014
  • 资助金额:
    $ 35.81万
  • 项目类别:
Single neuron mechanisms of sensory-motor learning
感觉运动学习的单神经元机制
  • 批准号:
    8801295
  • 财政年份:
    2014
  • 资助金额:
    $ 35.81万
  • 项目类别:
High-Density Recording and Stimulating Microelectrodes
高密度记录和刺激微电极
  • 批准号:
    8935966
  • 财政年份:
    2014
  • 资助金额:
    $ 35.81万
  • 项目类别:

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Environmental Exposures & Sleep in the Nurses' Health Study 3
环境暴露
  • 批准号:
    10677271
  • 财政年份:
    2023
  • 资助金额:
    $ 35.81万
  • 项目类别:
Digital monitoring of autonomic activity to detect empathy loss in behavioral variant frontotemporal dementia
对自主活动进行数字监测以检测行为变异型额颞叶痴呆的同理心丧失
  • 批准号:
    10722938
  • 财政年份:
    2023
  • 资助金额:
    $ 35.81万
  • 项目类别:
Muscle Fatigue's Impact on Gait Mechanics and Neuromuscular Control in Knee Osteoarthritis
肌肉疲劳对膝骨关节炎步态力学和神经肌肉控制的影响
  • 批准号:
    10676554
  • 财政年份:
    2023
  • 资助金额:
    $ 35.81万
  • 项目类别:
Fathers and Children Exercising Together (FACEiT)
父亲和孩子一起锻炼 (FACEiT)
  • 批准号:
    10789457
  • 财政年份:
    2023
  • 资助金额:
    $ 35.81万
  • 项目类别:
Smart Walk: A culturally tailored smartphone-delivered physical activity intervention to reduce cardiometabolic disease risk among African American women
Smart Walk:一种根据文化定制的智能手机提供的身体活动干预措施,以降低非裔美国女性的心脏代谢疾病风险
  • 批准号:
    10639951
  • 财政年份:
    2023
  • 资助金额:
    $ 35.81万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了