Immunometabolism in microbial sepsis
微生物脓毒症的免疫代谢
基本信息
- 批准号:9764389
- 负责人:
- 金额:$ 28.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAffectAnabolismAnimal ModelAnti-Bacterial AgentsAnti-inflammatoryAntibacterial ResponseAntisepsisBacterial InfectionsCASP1 geneCause of DeathCell physiologyCellsCessation of lifeClinical TrialsComplexDNA Sequence AlterationDefense MechanismsDevelopmentEnzymesFoundationsFumaratesFutureG6PD geneGenerationsGeneticGlucoseGlucosephosphate DehydrogenaseGoalsHealthcare SystemsHexosaminesImmuneImmune systemIn VitroIndividualInfectionInflammasomeInflammationInflammatoryInflammatory ResponseInnate Immune ResponseIntensive Care UnitsKnowledgeLeadLinkMass Spectrum AnalysisMediatingMediator of activation proteinMetabolicMetabolismModelingMolecularMorbidity - disease rateMusNuclearO-GlcNAc transferasePathogenesisPathway interactionsPentosephosphate PathwayPhagocytosisPharmacologyPlayPreventionProductionProtein-Serine-Threonine KinasesRIPK3 geneRegimenRegulationRoleSepsisSignal TransductionSumSyndromeTestingTherapeuticTraumaUnited Statesbasececal ligation puncturecombatcullin-3cytokinecytokine release syndromeenzyme pathwayglucose metabolismimmune activationin vivoinnate immune functioninsightmacrophagemicrobialmortalitynew therapeutic targetnovelnovel strategiespolymicrobial sepsisreceptorsepticseptic patientstherapeutic target
项目摘要
Project Summary/Abstract
Sepsis is the most common cause of mortality in many intensive care units and is responsible for more than
250,000 deaths in the United States annually. Microbial infection and trauma are the most common causes of
sepsis. Sepsis is characterized by an exaggerated innate immune response leading to a cytokine storm.
Recent studies suggest that activation of the innate immune cells causes vigorous metabolic changes towards
increased glucose utilization. Elevated glucose metabolism is also a common feature in the initial state of
sepsis. However, the role of glucose metabolism reprogramming in the regulation of innate immune function
and its relevance to sepsis is poorly understood. In this Proposal, we aim to study the role of two individual
glucose metabolism pathways in microbial sepsis, the hexosamine biosynthesis pathway (HBP) and the
pentose phosphate pathway (PPP). Our preliminary studies revealed essential roles of HBP-associated O-
GlcNAc (O-linked β-N-acetylglucosamine) signaling and PPP in antagonizing inflammatory response and
bacterial spreading, respectively. We further identified nuclear factor E2-related factor-2 (Nrf2) as a critical
mediator of both HBP and PPP pathways. Therefore, promoting the activities of HBP and PPP pathways
through pharmacological activation of Nrf2 may represent a promising therapeutic regimen for treating
microbial sepsis. We hypothesize that 1) HBP-associated O-GlcNAc signaling inhibits the innate immune
activation through O-GlcNAcylation of RIPK3 (receptor-interacting serine/threonine kinase 3); 2) PPP is
required for macrophage bacterial killing and host survival in sepsis by mediating caspase-1 activation; 3)
Genetic and pharmacological activation of these glucose metabolism pathways is effective in the treatment of
microbial sepsis. Cecal ligation and puncture-induced polymicrobial sepsis model will be employed to examine
the role and functions of glucose metabolism pathways. We will test whether dimethyl fumarate (DMF)
treatment plays a protective role in sepsis-induced mortality. The goal of the proposal is to examine the
function and mechanism of two glucose metabolism pathways on macrophage bacterial killing and
inflammation, both of which are key determinants of host survival. Results of these studies will provide novel
insights into the regulation and function of glucose metabolism signaling, which can potentially lead to the
identification of new therapeutic targets in the treatment of microbial sepsis.
项目摘要/摘要
败血症是许多重症监护病房中最常见的死亡率原因,负责超过
每年在美国25万人死亡。微生物感染和创伤是最常见的原因
败血症。败血症的特征是夸张的先天免疫反应,导致细胞因子风暴。
最近的研究表明,先天免疫细胞的激活会导致剧烈的代谢变化
葡萄糖利用率增加。升高的葡萄糖代谢也是初始状态的常见特征
败血症。但是,葡萄糖代谢重编程在先天免疫功能调节中的作用
它与脓毒症的相关性知之甚少。在此提案中,我们旨在研究两个人的作用
微生物败血症,己糖胺生物合成途径(HBP)中的葡萄糖代谢途径和
戊糖磷酸途径(PPP)。我们的初步研究揭示了与HBP相关的O-的重要作用
GlcNAC(O连接的β-N-乙酰葡萄糖)信号传导和PPP在拮抗炎症反应和PPP中
细菌扩散。我们进一步将核因子E2相关因子2(NRF2)视为关键
HBP和PPP途径的介体。因此,促进HBP和PPP途径的活动
通过NRF2的药物激活可能代表一种有前途的治疗方案
微生物败血症。我们假设1)与HBP相关的O-GLCNAC信号抑制了先天免疫
通过RIPK3的O-Glcnacylation(受体相互作用的丝氨酸/苏氨酸激酶3)激活; 2)PPP是
通过介导caspase-1激活,巨噬细菌在败血症中杀死和宿主存活所必需的; 3)
这些葡萄糖代谢途径的遗传和药物激活有效地治疗
微生物败血症。将雇用盲肠结扎和穿刺诱导的多症败血症模型来检查
葡萄糖代谢途径的作用和功能。我们将测试富马酸二甲基(DMF)是否
治疗在败血症引起的死亡率中起受保护的作用。该提议的目的是检查
巨噬细菌杀死和
炎症,两者都是宿主存活的关键决定者。这些研究的结果将提供新颖
对葡萄糖代谢信号传导的调节和功能的见解,这可能会导致
鉴定新的治疗靶标在微生物败血症治疗中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haitao Wen其他文献
Haitao Wen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haitao Wen', 18)}}的其他基金
Targeting immune inhibitory molecule SUSD2 to reverse immunosuppression
靶向免疫抑制分子SUSD2逆转免疫抑制
- 批准号:
10430219 - 财政年份:2021
- 资助金额:
$ 28.6万 - 项目类别:
Targeting immune inhibitory molecule SUSD2 to reverse immunosuppression
靶向免疫抑制分子SUSD2逆转免疫抑制
- 批准号:
10274585 - 财政年份:2021
- 资助金额:
$ 28.6万 - 项目类别:
Targeting immune inhibitory molecule SUSD2 to reverse immunosuppression
靶向免疫抑制分子SUSD2逆转免疫抑制
- 批准号:
10631911 - 财政年份:2021
- 资助金额:
$ 28.6万 - 项目类别:
Role and Mechanism of NLRX1-mediated Cell Stress Response in Insulin Resistance
NLRX1介导的细胞应激反应在胰岛素抵抗中的作用和机制
- 批准号:
8487694 - 财政年份:2013
- 资助金额:
$ 28.6万 - 项目类别:
相似国自然基金
KAT2A通过影响宿主DC代谢重编程介导肾移植急性细胞性排斥反应的机制研究
- 批准号:82270795
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
内环境调控代谢重编程影响老年急性肾损伤进展至慢性肾脏病的机制研究
- 批准号:92049103
- 批准年份:2020
- 资助金额:60.0 万元
- 项目类别:重大研究计划
代谢重编程调控细胞命运影响急性肾损伤慢性化的关键机制及干预靶点研究
- 批准号:82030025
- 批准年份:2020
- 资助金额:297 万元
- 项目类别:重点项目
基于非组蛋白乙酰化修饰探讨GSK3β/ULK1通路调控线粒体自噬对急性肝衰竭能量代谢的影响
- 批准号:82070609
- 批准年份:2020
- 资助金额:54 万元
- 项目类别:面上项目
急性缺氧介导的肠道微生物-胆汁酸-FXR-CYP3A4轴影响药物肠首过代谢的分子机制研究
- 批准号:82001995
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 28.6万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 28.6万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 28.6万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 28.6万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 28.6万 - 项目类别:
Research Grant