Mitochondrial metabolism in microbial sepsis
微生物脓毒症中的线粒体代谢
基本信息
- 批准号:10457821
- 负责人:
- 金额:$ 29.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AblationAcetyl Coenzyme AAcetylationAcuteAnimal ModelAnti-Bacterial AgentsAnti-Inflammatory AgentsAntibacterial ResponseAntiinflammatory EffectAntisepsisBacterial InfectionsCalciumCalcium ChannelCalcium SignalingCause of DeathCell DeathCellsClinicalClinical TrialsComplexDefense MechanismsDevelopmentElectron Transport Complex IIIFoundationsFutureGene DeletionGenerationsGeneticGoalsHealthcare SystemsImmuneImmune systemImmunosuppressionImpairmentInfectionInflammasomeInflammationInflammatory ResponseIntensive Care UnitsInterleukin-1 betaKnowledgeLeadMass Spectrum AnalysisMediatingMediator of activation proteinMembraneMetabolicMetabolic PathwayMetabolismMitochondriaModelingMolecularMorbidity - disease rateMusMyeloid CellsNatural ImmunityOrgan failureOrganellesPathogenesisPathway interactionsPeripheral Blood Mononuclear CellPhagocytosisPhagolysosomePhagosomesPharmacologyPlayPreventionProductionProtein AcetylationRegimenRegulationRoleRuptureSepsisSignal TransductionSorting - Cell MovementSumSyndromeTestingTherapeuticTraumabactericidebasecalcium uniportercecal ligation puncturecell motilitycytokinecytokine release syndromeefficacious treatmentimmune activationimmune functionimprovedinnate immune functioninsightmacrophagemembermicrobialmitochondrial metabolismmortalitynew therapeutic targetnovelnovel strategiespolymicrobial sepsisprotective effectpyruvate dehydrogenaserecruitrepairedresponsesepticseptic patientssystemic inflammatory responsetherapeutic targetuptake
项目摘要
Project Summary/Abstract
Sepsis is the most common cause of death in intensive care units and represents a major burden to the US
health care system. Microbial infection and trauma are the most common triggers of acute systemic
inflammatory response that eventually leads to end organ failure and mortality in sepsis. Mitochondria, a
highly metabolically active organelle, have been shown to play an essential role in the innate immune function
and inflammatory response. Robust changes in mitochondrial metabolism (mito-metabolism) occur during
clinical and experimental sepsis. However, the signaling mechanism leading to alterations in mito-metabolism
and its functional consequence on the pathogenesis of sepsis are poorly understood. In this Proposal, we aim
to study the detrimental effects of metabolic abnormalities mediated by mitochondrial calcium signaling on the
innate immune function during microbial sepsis. Our preliminary studies identified the mitochondrial calcium
uniporter (MCU), a key calcium channel for mitochondrial calcium uptake, as an essential regulator of bacterial
killing and septic inflammation. We found that genetic ablation of MCU resulted in improved phagosomal
bacterial killing and less interleukin 1β (IL-1β) secretion due to elevated LC3-associated phagocytosis (LAP).
Mechanistically, MCU inhibits the assembly of LAP complex by promoting mitochondrial metabolite acetyl-
coenzyme A (acetyl-CoA) generation via the pyruvate dehydrogenase (PDH). Therefore, blockade of MCU or
PDH function may represent a promising therapeutic regimen for treating microbial sepsis. The goal of the
proposal is to examine the function and mechanism of mitochondrial calcium signaling-mediated mito-
metabolism on phagosomal bacterial killing and inflammation, both of which are key determinants of host
survival during microbial sepsis. We hypothesize that 1) decreased acetyl-CoA generation in Mcu-deficient
macrophages promotes LAP formation via protein acetylation-dependent mechanism; 2) enhanced LAP
formation promotes phagosome member repair mechanism to limit excessive inflammasome-mediated IL-1β
cleavage; 3) pharmacological inhibition of PDH by CPI-613 is effective in the treatment of microbial sepsis.
Cecal ligation and puncture-induced polymicrobial sepsis model will be employed to examine the role and
functions of MCU-mediated acetyl-CoA metabolism. We will test whether PDH inhibition by CPI-613 plays a
protective effect on sepsis-induced mortality, as well as sepsis-induced immunosuppression. Results of these
studies will provide novel insights into the regulation and function of mito-metabolism, which can potentially
lead to the identification of new therapeutic targets in the treatment of microbial sepsis.
项目摘要/摘要
败血症是重症监护病房中最常见的死亡原因,代表了美国的重大燃烧
医疗保健系统。微生物感染和创伤是急性全身的最常见触发因素
炎症反应有时会导致败血症的结束器官衰竭和死亡率。线粒体,a
高度代谢活跃的细胞器已被证明在先天免疫功能中起着至关重要的作用
和炎症反应。线粒体代谢(线粒体代谢)的牢固变化发生在期间
临床和实验性败血症。但是,信号传导机制导致线索代谢发生变化
它对败血症发病机理的功能后果知之甚少。在此提案中,我们的目标
研究线粒体钙信号介导的代谢异常的有害作用对
微生物败血症期间先天免疫功能。我们的初步研究确定了线粒体钙
unitporter(MCU),线粒体钙摄取的关键钙通道,作为细菌的必要调节剂
杀戮和化粪池注射。我们发现MCU的遗传消融导致了吞噬体的改善
由于LC3相关的吞噬作用升高,细菌杀伤和少细胞介素1β(IL-1β)分泌。
从机械上讲,MCU通过促进线粒体代谢物乙酰基抑制膝盖复合物的组装
辅酶A(乙酰-COA)通过丙酮酸脱氢酶(PDH)产生。因此,MCU或
PDH功能可能代表用于治疗微生物败血症的有前途的治疗方案。目标的目标
建议是检查线粒体信号传导介导的线粒体的功能和机制
吞噬细菌杀死和注射的代谢是宿主的关键决定者
微生物败血症期间的生存。我们假设1)改善了MCU的乙酰辅酶A产生
巨噬细胞通过蛋白质乙酰化依赖性机制促进膝盖形成。 2)增强的膝盖
形成促进了吞噬体成员修复机制,以限制过量的炎性体介导的IL-1β
乳沟; 3)CPI-613对PDH的药理抑制作用可有效治疗微生物败血症。
将聘请盲肠结扎和穿刺诱导的多肌败血症模型来检查角色和
MCU介导的乙酰-COA代谢的功能。我们将测试CPI-613抑制PDH是否播放A
对败血症诱导的死亡率以及败血症诱导的免疫抑制的保护作用。这些结果
研究将提供有关线索代谢的调节和功能的新见解,这可能有可能
导致在治疗微生物败血症治疗中鉴定出新的治疗靶标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haitao Wen其他文献
Haitao Wen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haitao Wen', 18)}}的其他基金
Targeting immune inhibitory molecule SUSD2 to reverse immunosuppression
靶向免疫抑制分子SUSD2逆转免疫抑制
- 批准号:
10430219 - 财政年份:2021
- 资助金额:
$ 29.56万 - 项目类别:
Targeting immune inhibitory molecule SUSD2 to reverse immunosuppression
靶向免疫抑制分子SUSD2逆转免疫抑制
- 批准号:
10274585 - 财政年份:2021
- 资助金额:
$ 29.56万 - 项目类别:
Targeting immune inhibitory molecule SUSD2 to reverse immunosuppression
靶向免疫抑制分子SUSD2逆转免疫抑制
- 批准号:
10631911 - 财政年份:2021
- 资助金额:
$ 29.56万 - 项目类别:
Role and Mechanism of NLRX1-mediated Cell Stress Response in Insulin Resistance
NLRX1介导的细胞应激反应在胰岛素抵抗中的作用和机制
- 批准号:
8487694 - 财政年份:2013
- 资助金额:
$ 29.56万 - 项目类别:
相似国自然基金
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
乙酰辅酶A参与组蛋白乙酰化修饰在可卡因成瘾中的作用及其分子机制
- 批准号:81871043
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
β-羟基丁酰化在丁酸钠调节胰岛β细胞功能中的作用研究
- 批准号:81870526
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
SAHB动态调控SCAD乙酰化修饰在脂肪酸代谢失衡介导房颤的机制研究
- 批准号:81870258
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
SIRT3调节胰岛功能的机制研究
- 批准号:81770767
- 批准年份:2017
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
Studies on the impact of acetyl-cysteine on metabolism
乙酰半胱氨酸对代谢影响的研究
- 批准号:
10574934 - 财政年份:2022
- 资助金额:
$ 29.56万 - 项目类别:
Thioesterase-mediated lipotoxicity in liver and thermogenic adipose tissue
肝脏和产热脂肪组织中硫酯酶介导的脂毒性
- 批准号:
10614028 - 财政年份:2021
- 资助金额:
$ 29.56万 - 项目类别:
Thioesterase-mediated lipotoxicity in liver and thermogenic adipose tissue
肝脏和产热脂肪组织中硫酯酶介导的脂毒性
- 批准号:
10280397 - 财政年份:2021
- 资助金额:
$ 29.56万 - 项目类别:
Metabolic Control of Proliferation and Differentiation in Oligodendrocytes
少突胶质细胞增殖和分化的代谢控制
- 批准号:
10315354 - 财政年份:2021
- 资助金额:
$ 29.56万 - 项目类别:
Thioesterase-mediated lipotoxicity in liver and thermogenic adipose tissue
肝脏和产热脂肪组织中硫酯酶介导的脂毒性
- 批准号:
10468796 - 财政年份:2021
- 资助金额:
$ 29.56万 - 项目类别: