Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
基本信息
- 批准号:8760824
- 负责人:
- 金额:$ 28.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-28 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityApplications GrantsAreaAttentionBacillus amyloliquefaciens barstar proteinBacillus amyloliquefaciens ribonucleaseBindingBinding ProteinsBiological MarkersBiosensing TechniquesBiosensorCancer DetectionCell physiologyCharacteristicsChemicalsChemistryClinicalComplexCoupledDNADetectionDevelopmentDevicesDiagnosticDimensionsDiseaseDrug DesignElementsEngineeringEnvironmental MonitoringEquilibriumEventExhibitsGenerationsGeneric DrugsGenetic EngineeringGenomicsGoalsHybridsIndividualKineticsKnowledgeLigandsMechanicsMembraneMembrane ProteinsMethodologyModificationMolecularNanostructuresNatureOutcomePharmaceutical PreparationsPhasePositioning AttributeProcessPropertyProstate-Specific AntigenProtein AnalysisProtein EngineeringProteinsProteomicsResearchResolutionRibonucleasesSamplingScaffolding ProteinSchemeScienceSensitivity and SpecificitySpecificityStagingStructureTechnologyTertiary Protein StructureThermodynamicsTimeWorkaptameraqueousarmbasechemical stabilitydesigndetectorflexibilityhydroxamateimprovedin vivoinhibitor/antagonistnanodevicenanoporenanoscaleoutcome forecastprotein complexprotein protein interactionpublic health relevanceresponsescaffoldsensorsingle moleculetooltraituptake
项目摘要
DESCRIPTION (provided by applicant): Unraveling the interaction networks among functional proteins is essential in fundamental and clinical biomedical diagnostics by providing a mechanistic understanding of the complex regulatory processes of the cell, identifying their relationships to diseases, accelerating protein biomarker discovery, and assisting drug design. Advances in rational membrane protein design, chemical modification, biomolecular recognition, and single-molecule science will be used in concert for the creation of a new methodology to sample protein-protein interactions at high temporal and spatial resolution, as well as for the detection, exploration, and characterization of individual proteins. These proposed studies are aimed at engineering protein nanopore- based sensing devices featured by ligand-containing flexible tethers. Ample redesign of ferric hydroxamate uptake component A (FhuA), a monomeric b-barrel protein with a remarkable array of advantageous traits, such as robustness, versatility, and tractability, will result in a unique nanostructure with a single tethered proteinor DNA aptamer ligand at a strategic positioning of the nanopore. The FhuA-based scaffold is an attractive choice for this task, because it's open-state, quiet current remains stable for long periods within an unusually broad range of detection circumstances. These benefits will be used in various biosensing schemes, in which individual protein-protein and protein-DNA recognition events will produce detectable, discrete and reversible changes in the conformational dynamics of the movable tether, inducing alterations in the single- channel electrical signature. The expected immediate outcomes will be the following: (i) the creation of sensing elements for examining protein-protein interactions under equilibrium and non-equilibrium conditions; (ii) the development of highly specific nanopore-based sensing elements for a protein biomarker; (iii) a better understanding of the impact of tunable and constraining tethers on the intermolecular forces among protein partners, which has implications for the in vivo contexts of complex recognition events produced by anchored protein domains; (iv) the improvement in the sensitivity of the single-molecule detection of protein-protein interfaces, pushing forward the nanopore technology for the disentanglement of weak protein-protein interactions; (v) the expansion of the modularity and scalability of engineered protein nanopores as well as their integration with a synthetic membrane, improving their mechanical, thermal, electrical, and chemical stability. The adaptation of these unusual nanostructures with movable arms to an integrated microfabricated chip platform will provide a new generation of research tools for exploring the molecular basis of protein-protein recognition events in a sensitive, specific and quantitative fashion.
描述(由申请人提供):通过提供对细胞复杂调节过程的机械理解、确定其与疾病的关系、加速蛋白质生物标志物发现并协助药物,阐明功能蛋白之间的相互作用网络对于基础和临床生物医学诊断至关重要设计。合理膜蛋白设计、化学修饰、生物分子识别和单分子科学方面的进步将共同用于创建一种新的方法,以高时间和空间分辨率对蛋白质-蛋白质相互作用进行采样,并用于检测、单个蛋白质的探索和表征。这些拟议的研究旨在工程化基于蛋白质纳米孔的传感装置,其特征在于含有配体的柔性系链。异羟肟酸铁吸收成分 A (FhuA) 是一种单体 b 桶蛋白,具有一系列显着的优势特性,例如稳健性、多功能性和易处理性,对异羟肟酸铁吸收成分 A (FhuA) 进行充分重新设计,将产生具有单一束缚蛋白或 DNA 适体配体的独特纳米结构纳米孔的战略定位。基于 FhuA 的支架是这项任务的一个有吸引力的选择,因为它处于开放状态,安静电流在异常广泛的检测环境下长时间保持稳定。这些优点将用于各种生物传感方案,其中单个蛋白质-蛋白质和蛋白质-DNA 识别事件将在可移动系绳的构象动力学中产生可检测的、离散的和可逆的变化,从而引起单通道电特征的改变。预期的直接成果如下:(i)创建用于检查平衡和非平衡条件下蛋白质-蛋白质相互作用的传感元件; (ii) 开发用于蛋白质生物标志物的高度特异性的基于纳米孔的传感元件; (iii) 更好地了解可调和约束系链对蛋白质伙伴之间分子间力的影响,这对锚定蛋白质结构域产生的复杂识别事件的体内环境具有影响; (iv) 提高蛋白质-蛋白质界面单分子检测的灵敏度,推动纳米孔技术解开弱蛋白质-蛋白质相互作用; (v) 工程蛋白质纳米孔的模块化和可扩展性的扩展以及它们与合成膜的集成,提高它们的机械、热、电和化学稳定性。将这些具有可移动臂的不寻常纳米结构适应集成微加工芯片平台将为以灵敏、特异和定量的方式探索蛋白质-蛋白质识别事件的分子基础提供新一代研究工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LIVIU MOVILEANU其他文献
LIVIU MOVILEANU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LIVIU MOVILEANU', 18)}}的其他基金
Generalizable Nanosensors for Probing Highly Specific Interactions of Protein Kinases
用于探测蛋白激酶高度特异性相互作用的通用纳米传感器
- 批准号:
10719635 - 财政年份:2023
- 资助金额:
$ 28.64万 - 项目类别:
Development of Modular Synthetic Sensors for Protein Biomarker Detection
用于蛋白质生物标志物检测的模块化合成传感器的开发
- 批准号:
10659642 - 财政年份:2023
- 资助金额:
$ 28.64万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
10461887 - 财政年份:2009
- 资助金额:
$ 28.64万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
8537210 - 财政年份:2009
- 资助金额:
$ 28.64万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
8136461 - 财政年份:2009
- 资助金额:
$ 28.64万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
8325070 - 财政年份:2009
- 资助金额:
$ 28.64万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
7939932 - 财政年份:2009
- 资助金额:
$ 28.64万 - 项目类别:
Engineered Nanopores for Single-Molecule Stochastic Sensing
用于单分子随机传感的工程纳米孔
- 批准号:
10227053 - 财政年份:2009
- 资助金额:
$ 28.64万 - 项目类别:
相似国自然基金
战略研究类:大气学科国家自然科学基金资助布局及其动态变化分析—以2020版申请代码为视角
- 批准号:
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:专项基金项目
中国数学会2009年年会资助申请
- 批准号:10926004
- 批准年份:2009
- 资助金额:15.0 万元
- 项目类别:数学天元基金项目
中药学基础研究现状、资助格局与申请代码的研究
- 批准号:30945203
- 批准年份:2009
- 资助金额:9.0 万元
- 项目类别:专项基金项目
肿瘤学基础研究现状、资助格局与申请代码的研究
- 批准号:30945201
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:专项基金项目
模糊数学与系统国际学术研讨会资助申请
- 批准号:10826022
- 批准年份:2008
- 资助金额:4.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Cyclic di-AMP-dependent signaling in tickborne relapsing fever Borrelia
蜱传回归热伯氏疏螺旋体中的环状双 AMP 依赖性信号传导
- 批准号:
10679004 - 财政年份:2022
- 资助金额:
$ 28.64万 - 项目类别:
Cyclic di-AMP-dependent signaling in tickborne relapsing fever Borrelia
蜱传回归热伯氏疏螺旋体中的环状双 AMP 依赖性信号传导
- 批准号:
10503309 - 财政年份:2022
- 资助金额:
$ 28.64万 - 项目类别:
Improved Tools for Accessing Pain Following Fracture and Enabling Standardized Pain Phenotyping
改进用于获取骨折后疼痛并实现标准化疼痛表型的工具
- 批准号:
10856944 - 财政年份:2021
- 资助金额:
$ 28.64万 - 项目类别:
Dynamic Changes in Erythrocyte 2,3 DPG as a Driver of Cardiac Dysfunction in End Stage Kidney Disease
红细胞 2,3 DPG 的动态变化是终末期肾病心脏功能障碍的驱动因素
- 批准号:
10254626 - 财政年份:2021
- 资助金额:
$ 28.64万 - 项目类别:
Dynamic Changes in Erythrocyte 2,3 DPG as a Driver of Cardiac Dysfunction in End Stage Kidney Disease
红细胞 2,3 DPG 的动态变化是终末期肾病心脏功能障碍的驱动因素
- 批准号:
10426221 - 财政年份:2021
- 资助金额:
$ 28.64万 - 项目类别: