Background phase correction for quantitative cardiovascular MRI
定量心血管 MRI 的背景相位校正
基本信息
- 批准号:9182586
- 负责人:
- 金额:$ 18.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAcousticsAddressAffectAnatomyAneurysmAreaAtherosclerosisBlood VesselsBlood flowCardiacCardiac OutputCardiovascular systemClinicalCoupledDataDevelopmentDiagnosisDoppler UltrasoundError SourcesEvaluationFunctional disorderHealthHeartHeart DiseasesImageImaging DeviceImaging PhantomsImaging TechniquesIntracranial AneurysmIntracranial Arterial StenosisKidneyLeadLeast-Squares AnalysisLinkLiver CirrhosisLocationLungMagnetic Resonance ImagingManufacturer NameMapsMeasurementMeasuresMechanicsMedical ImagingMethodologyMethodsMorphologyPatientsPelvisPerformancePeripheral arterial diseasePhasePhysiologic pulsePhysiologyPolynomial ModelsPortal HypertensionPositioning AttributeProcessProtocols documentationPulsatile FlowReportingResearch PersonnelScanningSchemeShunt DeviceSliceSpecific qualifier valueStenosisStroke VolumeTimeTissuesUncertaintyValidationVascular DiseasesWorkabstractingbaseclinical sequencingcomputerized data processingcongenital heart disordercostdata acquisitionhealthy volunteerheart imaginghemodynamicshuman subjectimprovedin vivointerestmeetingsnon-invasive imagingtool
项目摘要
Project Summary/Abstract
Alterations in hemodynamics have been linked to wide-ranging cardiac and vascular conditions, including
congenital heart disease, valvular abnormalities, aortic atherosclerosis and aneurysm, renal stenosis, portal
hypertension due to liver cirrhosis, intracranial aneurysm and stenosis, and peripheral arterial disease. Phase-
contrast MRI (PC-MRI) is a noninvasive imaging technique that can potentially provide a comprehensive
evaluation of hemodynamics, which can be coupled with other important MRI-derived information on
cardiovascular anatomy, function, and tissue characterization. However, the credibility of PC-MRI as a
quantitative tool is challenged by the inaccuracies introduced by background phase. Studies have shown that
this background phase can introduce significant errors in the quantification of flow. One method that has been
proposed to quantify and correct for the background phase is to perform a separate scan using a static
phantom. This method, despite being robust, is impractical because of the significant extra time required to
perform phantom imaging for each clinical sequence performed. Another widely reported method to correct
background phase is based on performing polynomial fitting to the pixels that belong to the static tissue. The
accuracy of this method heavily relies on the availability of static tissue in the close vicinity of the region of
interest–a requirement that is often not met when imaging the heart or great vessels.
To address the issue of background phase that invariably impacts every PC-MRI measurement, we propose a
new correction scheme called multi-slice acquisition and processing (mSAP). In mSAP, in addition to the slice
of interest, at least one extra slice is collected using the same slice orientation and gradient waveforms but with
a different table position. By jointly processing the background phase information from multiple slices, mSAP
circumvents the shortcomings associated with existing methods at the cost of slightly prolonged acquisition. In
Specific Aim 1, we will develop a data acquisition and processing method for mSAP. We will modify and
streamline our current PC-MRI acquisition protocol to minimize the overhead associated with mSAP. To jointly
process the multi-slice data, we will develop and implement polynomial regression based on generalized least
squares with an ℓ1-norm penalty imposed on the coefficients of the polynomial. This fitting method is
completely automated and does not require tuning parameters. In Specific Aim 2, we will validate mSAP using
a pulsatile flow phantom and healthy volunteers. By using just one additional slice, we anticipate mSAP to
reduce the background phase errors to the level where miscalculation of flow volume is reduced to below 5%.
Our preliminary data demonstrate the validity of the primary assumption made in mSAP, i.e., background
phase maps collected using the same gradient waveforms but different table positions are identical. We
believe the methods developed in this work can be readily utilized in clinical settings to improve the accuracy of
an otherwise potent imaging tool.
项目摘要/摘要
血液动力学的改变与大范围心脏和血管状况有关,包括
先天性心脏病,瓣膜异常,主动脉粥样硬化和动脉瘤,肾脏狭窄,门户
肝硬化,颅内动脉瘤和狭窄以及周围动脉疾病引起的高血压。阶段-
对比度MRI(PC-MRI)是一种无创成像技术,可能会提供全面的
血液动力学的评估,可以与其他重要的MRI衍生信息相结合
心血管解剖学,功能和组织表征。但是,PC-MRI作为一个
定量工具受到背景阶段引入的不准确性的挑战。研究表明
该背景阶段可能会引入流量量的重大错误。一种方法
提议量化和更正背景阶段的是使用静态进行单独的扫描
幻影。这种方法是坚固的,因为需要大量的额外时间,这是不切实际的
为执行的每个临床序列执行幻影成像。另一种广泛报告的方法以纠正
背景阶段基于对属于静态组织的像素进行多项式拟合。
这种方法的准确性在很大程度上依赖于该区域附近静态组织的可用性
兴趣 - 成像心脏或伟大的血管时通常无法满足的要求。
为了解决背景阶段的问题,该问题总是会影响每个PC-MRI测量的问题,我们建议
新的校正方案称为多板式采集和处理(MSAP)。在MSAP中,除了切片
有趣的是,使用相同的切片方向和梯度波形收集至少一个额外的切片,但
不同的表位置。通过共同处理来自多个切片的背景阶段信息,MSAP
规避与现有方法相关的缺点,以稍微延长的收购成本。在
具体目标1,我们将为MSAP开发数据采集和处理方法。我们将修改并
简化我们当前的PC-MRI采集协议,以最大程度地减少与MSAP相关的开销。共同
处理多板块数据,我们将基于广义最低的开发和实施多项式回归
对多项式的系数施加了ℓ1-norm惩罚的正方形。这种拟合方法是
完全自动化,不需要调整参数。在特定的目标2中,我们将使用MSAP验证MSAP
脉动流量幻影和健康的志愿者。通过仅使用一个额外的切片,我们预计MSAP
将背景误差降低到流量量错误降低到5%以下的水平。
我们的初步数据证明了MSAP中主要假设的有效性,即背景
使用相同的梯度波形收集的相位图,但不同的表位置是相同的。我们
相信这项工作中开发的方法很容易在临床环境中使用以提高
原本潜在的成像工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rizwan Ahmad其他文献
Rizwan Ahmad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rizwan Ahmad', 18)}}的其他基金
A comprehensive valvular heart disease assessment with stress cardiac MRI
通过负荷心脏 MRI 进行全面的瓣膜性心脏病评估
- 批准号:
10664961 - 财政年份:2021
- 资助金额:
$ 18.36万 - 项目类别:
A comprehensive deep learning framework for MRI reconstruction
用于 MRI 重建的综合深度学习框架
- 批准号:
10382334 - 财政年份:2021
- 资助金额:
$ 18.36万 - 项目类别:
A comprehensive deep learning framework for MRI reconstruction
用于 MRI 重建的综合深度学习框架
- 批准号:
10608060 - 财政年份:2021
- 资助金额:
$ 18.36万 - 项目类别:
A comprehensive deep learning framework for MRI reconstruction
用于 MRI 重建的综合深度学习框架
- 批准号:
10211757 - 财政年份:2021
- 资助金额:
$ 18.36万 - 项目类别:
A comprehensive valvular heart disease assessment with stress cardiac MRI
通过负荷心脏 MRI 进行全面的瓣膜性心脏病评估
- 批准号:
10455412 - 财政年份:2021
- 资助金额:
$ 18.36万 - 项目类别:
A New Paradigm for Rapid, Accurate Cardiac Magnetic Resonance Imaging
快速、准确的心脏磁共振成像的新范例
- 批准号:
10171886 - 财政年份:2017
- 资助金额:
$ 18.36万 - 项目类别:
A New Paradigm for Rapid, Accurate Cardiac Magnetic Resonance Imaging
快速、准确的心脏磁共振成像的新范例
- 批准号:
9330525 - 财政年份:2017
- 资助金额:
$ 18.36万 - 项目类别:
MRI T2 mapping for quantitative assessment of venous oxygen saturation
用于定量评估静脉血氧饱和度的 MRI T2 映射
- 批准号:
9325034 - 财政年份:2016
- 资助金额:
$ 18.36万 - 项目类别:
Background phase correction for quantitative cardiovascular MRI
定量心血管 MRI 的背景相位校正
- 批准号:
9297307 - 财政年份:2016
- 资助金额:
$ 18.36万 - 项目类别:
相似国自然基金
航天低温推进剂加注系统气液状态声学监测技术研究
- 批准号:62373276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
- 批准号:52350039
- 批准年份:2023
- 资助金额:80 万元
- 项目类别:专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
- 批准号:82302874
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
海洋声学功能材料发展战略研究
- 批准号:52342304
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:专项项目
相似海外基金
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10584507 - 财政年份:2022
- 资助金额:
$ 18.36万 - 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10448971 - 财政年份:2022
- 资助金额:
$ 18.36万 - 项目类别:
A machine learning ultrasound beamformer based on realistic wave physics for high body mass index imaging
基于真实波物理学的机器学习超声波束形成器,用于高体重指数成像
- 批准号:
10595030 - 财政年份:2021
- 资助金额:
$ 18.36万 - 项目类别:
A machine learning ultrasound beamformer based on realistic wave physics for high body mass index imaging
基于真实波物理学的机器学习超声波束形成器,用于高体重指数成像
- 批准号:
10435438 - 财政年份:2021
- 资助金额:
$ 18.36万 - 项目类别: