Pediatric volumetric ultrasound scanner
儿科体积超声扫描仪
基本信息
- 批准号:10739411
- 负责人:
- 金额:$ 55.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-07 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbdomenAbdominal PainAccelerationAcousticsAddressAdultAnatomyAnesthesia proceduresBiological AssayBlood Flow VelocityBlood VesselsBlood flowBuffersCaliforniaCancerousCardiologyChildChildhoodColorComputer softwareCystDataDedicationsDependenceDetectionDevelopmentDiagnosisElectronicsElementsGoalsHeart ValvesImageImaging DeviceInterventionIonizing radiationKidneyLesionLiquid substanceLiverLocationMagnetic Resonance ImagingMapsMeasurementMotionMyocardiumOrgan SizePatientsPediatric cohortPediatricsPenetrationPhasePhysiologyPopulationProtocols documentationRadiationRadiology SpecialtyResolutionScanningSignal TransductionSliceSpeedStructural defectStructureSystemTechnologyTestingThickTimeTissuesTransducersTraumaUltrasonographyUniversitiesVisionVisualizationangiogenesisassessment applicationbonecontrast imagingcostdata visualizationdesignfetalflexibilityfollow-upimaging capabilitiesimaging studyimaging systemimprovedintegrated circuitkidney imagingliver imagingmeteroperationpediatric patientsradiologistreal-time imagesreconstructionsoftware developmentthree-dimensional visualizationtooltwo-dimensionalultrasoundvolunteer
项目摘要
Hundreds of millions of ultrasound (US) exams are performed each year worldwide. Typical limitations of
conventional US imaging include operator dependence, limited field of view, limited contrast, and diffraction-
limited resolution. Volumetric imaging has the potential to create an operator-independent acquisition protocol,
and ultrafast US acquisition has opened new opportunities to address field-of-view and contrast issues. Our
extended aperture approach applied here addresses spatial resolution limitations as well. With high resolution,
real-time imaging capabilities and the lack of ionizing radiation, US has great promise for imaging pediatric
patients; in particular, for children under 3 who cannot be imaged with MRI or CT without anesthesia, the
development of a high-resolution volumetric US scanner would be transformative. In particular, we set out to
image the pediatric liver and kidney within ~0.1 second, which requires a technological leap. New ASIC switch
matrices will enable high speed acquisition and GPU-based partial beam formation enables the visualization of
the 3D data. Reconstruction of the 3D vascular structure facilitates image-based recognition of the anatomical
location of a lesion. Ultrafast SVD Doppler imaging allows the visualization of very small blood vessels with blood
flow velocities as low as 4 mm/s. Abdominal pain is very common in children and US is frequently used to
determine the cause.
Accurate volumetric measurements of the kidney are problematic due to patient motion
and operator-dependent scanning. Assaying the liver and abdomen, particularly in the context of trauma are
similarly important. Thus, we seek to create this real-time imaging tool with resolution that exceeds CT and MR
but without the need for anesthesia or radiation. Using 1024 active system channels with integrated GPU
beamformers, we will create 2 transducers to span the needs of children for this technology, with spatial
resolution at 5 cm (~300 (azimuth) x 600 (elevation) x 300 (depth) µm) that should exceed that offered by MRI
or CT by several fold. The array will be realized using tiled modules that can be switched in a mode-dependent
fashion to accomplish B-mode imaging, color Doppler and contrast imaging. Over the past four years, Stanford
University and the University of Southern California have designed an adult extended-aperture abdominal-
imaging system, and demonstrated the improved spatial resolution, field of view and contrast that can be
achieved. We exploit these tools here to develop a dedicated pediatric volumetric scanner. Our aims to
accomplish this are to 1) create and integrate acoustic/electronic transducers to implement signal buffering and
multiplexing; and 2) develop volumetric software and conduct pediatric imaging studies as a proof of concept.
We will develop the software and systems, test the system components on adult volunteers and phantoms, and
develop 3D volumetric processing. We will image a cohort of pediatric patients spanning 3D kidney volumetric
mapping, detection and mapping of previously detected liver lesions. In each case, MRI will provide the gold
standard.
全世界每年进行数亿次超声(美国)检查。
传统的超声成像包括操作员依赖、有限的视野、有限的对比度和衍射
有限的分辨率有可能创建一个独立于操作员的采集协议,
超快的美国收购为解决视野和对比度问题提供了新的机会。
这里应用的扩展孔径方法也解决了高分辨率的空间分辨率限制。
实时成像能力和缺乏电离辐射,美国在儿科成像方面有着巨大的前景
患者;特别是对于 3 岁以下的儿童,在没有麻醉的情况下无法进行 MRI 或 CT 成像,
我们特别着手开发高分辨率体积美国扫描仪。
在约 0.1 秒内对儿科肝脏和肾脏进行成像,这需要新的 ASIC 交换机的技术飞跃。
矩阵将实现高速采集,基于 GPU 的部分波束形成可实现可视化
3D 数据的重建有助于基于图像的解剖识别。
超快 SVD 多普勒成像可以显示带有血液的非常小的血管。
流速低至 4 毫米/秒 腹痛在儿童中很常见,超声经常用于治疗。
确定原因。
由于患者运动,准确测量肾脏体积存在问题
和操作员依赖的扫描,特别是在创伤的情况下进行肝脏和腹部的检测。
同样重要的是,我们寻求创建这种分辨率超过 CT 和 MR 的实时成像工具。
但无需麻醉或辐射 使用具有集成 GPU 的 1024 个活动系统通道。
波束形成器,我们将创建 2 个传感器来满足儿童对该技术的需求,具有空间
5 cm(~300(方位角)x 600(仰角)x 300(深度)μm)处的分辨率应超过 MRI 提供的分辨率
或 CT 的数倍将使用可以根据模式进行切换的平铺模块来实现。
在过去的四年里,斯坦福大学完成了 B 型成像、彩色多普勒和对比成像。
大学和南加州大学设计了一种成人大孔径腹部
成像系统,并展示了可改善的空间分辨率、视场和对比度
我们利用这些工具开发了一款专用的儿科体积扫描仪。
实现这一目标的方法是 1) 创建并集成声学/电子传感器以实现信号缓冲和
多重分析;2) 开发体积软件并进行儿科成像研究作为概念验证。
我们将开发软件和系统,在成年志愿者和模型上测试系统组件,以及
我们将开发 3D 体积处理技术,对一组儿科患者进行 3D 肾脏体积成像。
先前检测到的肝脏病变的绘图、检测和绘图 在每种情况下,MRI 都将提供黄金。
标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine W Ferrara其他文献
Katherine W Ferrara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine W Ferrara', 18)}}的其他基金
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10584507 - 财政年份:2022
- 资助金额:
$ 55.83万 - 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10448971 - 财政年份:2022
- 资助金额:
$ 55.83万 - 项目类别:
Quantitative volumetric ultrasonic and photoacoustic tomography
定量体积超声和光声断层扫描
- 批准号:
10374704 - 财政年份:2021
- 资助金额:
$ 55.83万 - 项目类别:
Quantitative volumetric ultrasonic and photoacoustic tomography
定量体积超声和光声断层扫描
- 批准号:
10541211 - 财政年份:2021
- 资助金额:
$ 55.83万 - 项目类别:
相似国自然基金
腹腔巨噬细胞通过IL-16信号通路介导子宫内膜异位症慢性腹部疼痛
- 批准号:32371043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向小器官精准分割的腹部CT影像多器官分割技术研究
- 批准号:62303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向腹部创伤的超声辅助诊断关键技术研究
- 批准号:62371121
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
C/EBPZ调控鸡腹部脂肪组织形成的生物学功能和作用机制研究
- 批准号:32360825
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于肠道菌群介导TLR4/MyD88/NF-κB通路研究腹部推拿干预IBS肠道机械屏障的作用机制
- 批准号:
- 批准年份:2022
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Nociceptive Afferent Topographical Innervation of the Heart and Stomach
心脏和胃的伤害性传入地形神经支配
- 批准号:
10266322 - 财政年份:2019
- 资助金额:
$ 55.83万 - 项目类别:
Nociceptive Afferent Topographical Innervation of the Heart and Stomach
心脏和胃的伤害性传入地形神经支配
- 批准号:
10263240 - 财政年份:2019
- 资助金额:
$ 55.83万 - 项目类别:
Nociceptive Afferent Topographical Innervation of the Heart and Stomach
心脏和胃的伤害性传入地形神经支配
- 批准号:
10021470 - 财政年份:2019
- 资助金额:
$ 55.83万 - 项目类别:
Mechanisms and therapeutic interventions of postoperative gastric ileus
术后胃肠梗阻的机制和治疗干预
- 批准号:
10383642 - 财政年份:2017
- 资助金额:
$ 55.83万 - 项目类别:
Receptor Cross-Talk in Early Metastatic Dissemination
早期转移性播散中的受体串扰
- 批准号:
10343706 - 财政年份:2006
- 资助金额:
$ 55.83万 - 项目类别: