Pediatric volumetric ultrasound scanner
儿科体积超声扫描仪
基本信息
- 批准号:10739411
- 负责人:
- 金额:$ 55.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-07 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbdomenAbdominal PainAccelerationAcousticsAddressAdultAnatomyAnesthesia proceduresBiological AssayBlood Flow VelocityBlood VesselsBlood flowBuffersCaliforniaCancerousCardiologyChildChildhoodColorComputer softwareCystDataDedicationsDependenceDetectionDevelopmentDiagnosisElectronicsElementsGoalsHeart ValvesImageImaging DeviceInterventionIonizing radiationKidneyLesionLiquid substanceLiverLocationMagnetic Resonance ImagingMapsMeasurementMotionMyocardiumOrgan SizePatientsPediatric cohortPediatricsPenetrationPhasePhysiologyPopulationProtocols documentationRadiationRadiology SpecialtyResolutionScanningSignal TransductionSliceSpeedStructural defectStructureSystemTechnologyTestingThickTimeTissuesTransducersTraumaUltrasonographyUniversitiesVisionVisualizationangiogenesisassessment applicationbonecontrast imagingcostdata visualizationdesignfetalflexibilityfollow-upimaging capabilitiesimaging studyimaging systemimprovedintegrated circuitkidney imagingliver imagingmeteroperationpediatric patientsradiologistreal-time imagesreconstructionsoftware developmentthree-dimensional visualizationtooltwo-dimensionalultrasoundvolunteer
项目摘要
Hundreds of millions of ultrasound (US) exams are performed each year worldwide. Typical limitations of
conventional US imaging include operator dependence, limited field of view, limited contrast, and diffraction-
limited resolution. Volumetric imaging has the potential to create an operator-independent acquisition protocol,
and ultrafast US acquisition has opened new opportunities to address field-of-view and contrast issues. Our
extended aperture approach applied here addresses spatial resolution limitations as well. With high resolution,
real-time imaging capabilities and the lack of ionizing radiation, US has great promise for imaging pediatric
patients; in particular, for children under 3 who cannot be imaged with MRI or CT without anesthesia, the
development of a high-resolution volumetric US scanner would be transformative. In particular, we set out to
image the pediatric liver and kidney within ~0.1 second, which requires a technological leap. New ASIC switch
matrices will enable high speed acquisition and GPU-based partial beam formation enables the visualization of
the 3D data. Reconstruction of the 3D vascular structure facilitates image-based recognition of the anatomical
location of a lesion. Ultrafast SVD Doppler imaging allows the visualization of very small blood vessels with blood
flow velocities as low as 4 mm/s. Abdominal pain is very common in children and US is frequently used to
determine the cause.
Accurate volumetric measurements of the kidney are problematic due to patient motion
and operator-dependent scanning. Assaying the liver and abdomen, particularly in the context of trauma are
similarly important. Thus, we seek to create this real-time imaging tool with resolution that exceeds CT and MR
but without the need for anesthesia or radiation. Using 1024 active system channels with integrated GPU
beamformers, we will create 2 transducers to span the needs of children for this technology, with spatial
resolution at 5 cm (~300 (azimuth) x 600 (elevation) x 300 (depth) µm) that should exceed that offered by MRI
or CT by several fold. The array will be realized using tiled modules that can be switched in a mode-dependent
fashion to accomplish B-mode imaging, color Doppler and contrast imaging. Over the past four years, Stanford
University and the University of Southern California have designed an adult extended-aperture abdominal-
imaging system, and demonstrated the improved spatial resolution, field of view and contrast that can be
achieved. We exploit these tools here to develop a dedicated pediatric volumetric scanner. Our aims to
accomplish this are to 1) create and integrate acoustic/electronic transducers to implement signal buffering and
multiplexing; and 2) develop volumetric software and conduct pediatric imaging studies as a proof of concept.
We will develop the software and systems, test the system components on adult volunteers and phantoms, and
develop 3D volumetric processing. We will image a cohort of pediatric patients spanning 3D kidney volumetric
mapping, detection and mapping of previously detected liver lesions. In each case, MRI will provide the gold
standard.
每年在全球范围内进行数亿(美国)考试。典型的限制
常规的美国成像包括操作员依赖性,有限的视野,有限的对比度和衍射 -
有限的分辨率。体积成像有可能创建与操作员无关的采集协议,
Ultrafast US的收购为解决视野和对比问题提供了新的机会。我们的
此处采用的扩展光圈方法也解决了空间分辨率的限制。具有高分辨率,
实时成像功能和缺乏电离辐射,美国对小儿有很大的希望
患者;特别是,对于3岁以下的儿童,他们不能没有麻醉的MRI或CT成像,
高分辨率体积的美国扫描仪的开发将具有变革性。特别是,我们着手
在约0.1秒内对小儿肝脏和肾脏进行图像,这需要技术飞跃。新的ASIC开关
矩阵将使高速获取和基于GPU的部分光束形成能够可视化
3D数据。 3D血管结构重建基于图像的解剖学识别
病变的位置。超快SVD多普勒成像允许可视化非常小的血管
流速低至4 mm/s。腹痛在儿童中很常见,我们经常习惯
确定原因。
由于患者的运动,肾脏的准确测量值是有问题的
和依赖操作员的扫描。分析肝脏和腹部,特别是在创伤的背景下
同样重要。这是我们寻求以超过CT和MR的分辨率来创建这个实时成像工具
但是无需麻醉或辐射。使用与集成GPU的1024个活动系统通道
波束形式,我们将创建2个传感器,以跨越儿童对这项技术的需求,并使用空间
分辨率为5 cm(〜300(Azimuth)x 600(高程)x 300(深度)µm,应超过MRI提供的分辨率
或CT换几倍。阵列将使用可以在模式下切换的瓷砖模块来实现
完成B模式成像,颜色多普勒和对比成像的时尚。在过去的四年中,斯坦福
大学和南加州大学设计了一个成年的腹部扩展孔径 -
成像系统,并展示了可以改善的空间分辨率,视野和对比度可以是
成就了。我们在此处利用这些工具来开发专用的小儿体积扫描仪。我们的目标
完成此操作的是1)创建和集成声学/电子传感器以实现信号缓冲和
多路复用; 2)开发体积软件并进行小儿成像研究作为概念证明。
我们将开发软件和系统,在成人志愿者和幻影上测试系统组件,以及
开发3D体积处理。我们将图像跨越3D肾脏体积的小儿患者队列
先前检测到的肝病变的映射,检测和映射。在每种情况下,MRI都会提供黄金
标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katherine W Ferrara其他文献
Katherine W Ferrara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katherine W Ferrara', 18)}}的其他基金
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10584507 - 财政年份:2022
- 资助金额:
$ 55.83万 - 项目类别:
High Resolution Ultrasound in Interventional Radiology
介入放射学中的高分辨率超声
- 批准号:
10448971 - 财政年份:2022
- 资助金额:
$ 55.83万 - 项目类别:
Quantitative volumetric ultrasonic and photoacoustic tomography
定量体积超声和光声断层扫描
- 批准号:
10374704 - 财政年份:2021
- 资助金额:
$ 55.83万 - 项目类别:
Quantitative volumetric ultrasonic and photoacoustic tomography
定量体积超声和光声断层扫描
- 批准号:
10541211 - 财政年份:2021
- 资助金额:
$ 55.83万 - 项目类别:
相似国自然基金
腹腔巨噬细胞通过IL-16信号通路介导子宫内膜异位症慢性腹部疼痛
- 批准号:32371043
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
C/EBPZ调控鸡腹部脂肪组织形成的生物学功能和作用机制研究
- 批准号:32360825
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向小器官精准分割的腹部CT影像多器官分割技术研究
- 批准号:62303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ABCC2转运蛋白在克氏原螯虾腹部肌肉中抗汞积累特性研究
- 批准号:32302982
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向腹部创伤的超声辅助诊断关键技术研究
- 批准号:62371121
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Nociceptive Afferent Topographical Innervation of the Heart and Stomach
心脏和胃的伤害性传入地形神经支配
- 批准号:
10266322 - 财政年份:2019
- 资助金额:
$ 55.83万 - 项目类别:
Nociceptive Afferent Topographical Innervation of the Heart and Stomach
心脏和胃的伤害性传入地形神经支配
- 批准号:
10263240 - 财政年份:2019
- 资助金额:
$ 55.83万 - 项目类别:
Nociceptive Afferent Topographical Innervation of the Heart and Stomach
心脏和胃的伤害性传入地形神经支配
- 批准号:
10021470 - 财政年份:2019
- 资助金额:
$ 55.83万 - 项目类别:
Mechanisms and therapeutic interventions of postoperative gastric ileus
术后胃肠梗阻的机制和治疗干预
- 批准号:
10383642 - 财政年份:2017
- 资助金额:
$ 55.83万 - 项目类别:
Receptor Cross-Talk in Early Metastatic Dissemination
早期转移性播散中的受体串扰
- 批准号:
10343706 - 财政年份:2006
- 资助金额:
$ 55.83万 - 项目类别: