A comprehensive deep learning framework for MRI reconstruction
用于 MRI 重建的综合深度学习框架
基本信息
- 批准号:10608060
- 负责人:
- 金额:$ 56.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional4D MRIAccelerationAddressAdoptionAdultAlgorithmsAnesthesia proceduresArchitectureAwarenessBrainBrain NeoplasmsBrain imagingBreathingCardiacChildChildhoodClinicalDataDevelopmentDiagnosisDiseaseEvaluationExhibitsFormulationGoalsHeadacheHeartHeart DiseasesImageImaging DeviceImmuneInvestigationLearningMagnetic Resonance ImagingMapsMethodsModelingMotionNetwork-basedPatientsPatternPerformancePhasePhysicsPlayPredispositionProcessPythonsRecoveryRestSamplingScanningSedation procedureSpeedStructureTechniquesTechnologyTestingTimeTrainingVariantWorkcardiovascular imagingcomputer frameworkconvolutional neural networkcostdata acquisitiondata spacedeep learningdenoisingdesigndiagnostic valueheart imaginghigh dimensionalityimage reconstructionimaging modalityimprovedlearning strategymusculoskeletal imagingneural network architecturenovelpediatric patientsprospectivereal-time imagesreconstructionrepository
项目摘要
PROJECT SUMMARY/ABSTRACT
The primary goal of this investigation is to develop and validate a comprehensive, robust deep learning (DL)
framework that improves MRI reconstruction beyond the limits of existing technology. The proposed framework
uses “plug-and-play” algorithms to combine physics-driven MR acquisition models with state-of-the-art learned
image models, which are instantiated by image denoising subroutines. To fully exploit the rich structure of MR
images, we propose to use DL-based denoisers that are trained in an application-specific manner. The proposed
framework, termed PnP-DL, offers advantages over other existing DL methods, as well as compressed sensing
(CS). Compared to existing DL methods for MRI reconstruction, PnP-DL is more immune to inevitable variations
in the forward model, such as changes in the coil sensitivities or undersampling pattern, allowing it to generalize
across applications and acquisition settings. Compared to CS, PnP-DL recovers images faster, with higher quality,
and with potentially superior diagnostic value.
Our preliminary results highlight the potential of PnP-DL to advance MRI technology. In this work, we will fur-
ther develop PnP-DL and validate it in these major applications: cardiac cine, 2D brain, and 3D brain imaging.
In Aim 1, we will train and optimize convolutional neural network-based application-specific denoisers for the
above-mentioned applications. The denoiser with the best denoising performance will be selected for further
investigation. In Aim 2, we will develop and compare different PnP algorithms. The algorithm yielding the best
combination of reconstruction accuracy and computational speed will be implemented in Gadgetron for inline
processing. In Aim 3, we will compare the performance of PnP-DL to other state-of-the-art methods using retro-
spectively undersampled data. This study will demonstrate that, in terms of image quality, PnP-DL is superior to
CS and existing DL methods and, despite higher acceleration, is non-inferior to parallel MRI with rate-2 acceler-
ation. In Aim 4, we will evaluate the performance of PnP-DL using prospectively undersampled data from adult
and pediatric patients. Successful completion of this project will demonstrate that PnP-DL outperforms state-
of-the-art methods in terms of image quality while exhibiting a level of robustness and broad applicability that
has eluded other DL-based MRI reconstruction methods. The acceleration and image quality improvement
afforded by these developments will benefit almost all MRI applications, including pediatric imaging, where
reducing sedation is a pressing need, and high-dimensional imaging applications (e.g., whole-heart 4D flow
imaging), which are too slow for routine clinical use.
项目摘要/摘要
这项调查的主要目的是开发和验证全面,健壮的深度学习(DL)
改善MRI重建超出现有技术限制的框架。提出的框架
使用“插件”算法将物理驱动的MR采集模型与最先进的学习
图像模型,通过图像deo deo subroutines实例化。充分探索MR的丰富结构
图像,我们建议使用以应用特定方式训练的基于DL的DeNoiser。
称为PNP-DL的框架具有比其他现有DL方法的优点,以及压缩感应的
(CS)。与现有的MRI重建方法相比,PNP-DL更不可避免地不可避免地变化
在正向模型中,例如线圈灵敏度的变化或不足采样模式,使其概括
跨应用程序和收购设置。与CS相比,PNP-DL恢复图像的速度更高,质量更高,
并具有卓越的诊断价值。
我们的初步结果凸显了PNP-DL推进MRI技术的潜力。在这项工作中,我们将
在这些主要应用中,开发PNP-DL并验证它:心脏Cine,2D脑和3D脑成像。
在AIM 1中,我们将培训和优化基于卷积神经网络的应用程序特异性代码器
上述申请。将选择具有最佳Denoising性能的DeNoiser进一步选择
投资。在AIM 2中,我们将开发和比较不同的PNP算法。算法产生最好的
在Gadgetron中将实现重建精度和计算速度的组合
加工。在AIM 3中,我们将使用retro-
明显地提出了采样的数据。这项研究将表明,就图像质量而言,PNP-DL优于
CS和现有的DL方法,并且希望更高的加速度与平行MRI无关,而RATE-2加速度 -
ation。在AIM 4中,我们将使用成人前瞻性采样数据评估PNP-DL的性能
和儿科患者。该项目的成功完成将证明PNP-DL胜过州 -
在图像质量方面的艺术方法,同时表现出一定程度的鲁棒性和广泛的适用性
已经避免了其他基于DL的MRI重建方法。加速和图像质量改进
这些发展提供的几乎所有MRI应用都将受益,包括儿科成像,在哪里
减少镇静是紧迫的需求和高维成像应用(例如,全心4D流量
成像),对于常规临床使用而言太慢。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rizwan Ahmad其他文献
Rizwan Ahmad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rizwan Ahmad', 18)}}的其他基金
A comprehensive valvular heart disease assessment with stress cardiac MRI
通过负荷心脏 MRI 进行全面的瓣膜性心脏病评估
- 批准号:
10664961 - 财政年份:2021
- 资助金额:
$ 56.92万 - 项目类别:
A comprehensive deep learning framework for MRI reconstruction
用于 MRI 重建的综合深度学习框架
- 批准号:
10382334 - 财政年份:2021
- 资助金额:
$ 56.92万 - 项目类别:
A comprehensive deep learning framework for MRI reconstruction
用于 MRI 重建的综合深度学习框架
- 批准号:
10211757 - 财政年份:2021
- 资助金额:
$ 56.92万 - 项目类别:
A comprehensive valvular heart disease assessment with stress cardiac MRI
通过负荷心脏 MRI 进行全面的瓣膜性心脏病评估
- 批准号:
10455412 - 财政年份:2021
- 资助金额:
$ 56.92万 - 项目类别:
A New Paradigm for Rapid, Accurate Cardiac Magnetic Resonance Imaging
快速、准确的心脏磁共振成像的新范例
- 批准号:
10171886 - 财政年份:2017
- 资助金额:
$ 56.92万 - 项目类别:
A New Paradigm for Rapid, Accurate Cardiac Magnetic Resonance Imaging
快速、准确的心脏磁共振成像的新范例
- 批准号:
9330525 - 财政年份:2017
- 资助金额:
$ 56.92万 - 项目类别:
MRI T2 mapping for quantitative assessment of venous oxygen saturation
用于定量评估静脉血氧饱和度的 MRI T2 映射
- 批准号:
9325034 - 财政年份:2016
- 资助金额:
$ 56.92万 - 项目类别:
Background phase correction for quantitative cardiovascular MRI
定量心血管 MRI 的背景相位校正
- 批准号:
9297307 - 财政年份:2016
- 资助金额:
$ 56.92万 - 项目类别:
Background phase correction for quantitative cardiovascular MRI
定量心血管 MRI 的背景相位校正
- 批准号:
9182586 - 财政年份:2016
- 资助金额:
$ 56.92万 - 项目类别:
相似国自然基金
主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
- 批准号:82071991
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
- 批准号:81801139
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
4D PC-MRI血流动力学参数与主动脉夹层假腔血栓化的关系及模拟预测研究
- 批准号:81770474
- 批准年份:2017
- 资助金额:55.0 万元
- 项目类别:面上项目
基于4D血流MRI成像的左心房室流场变化介导的炎症反应在房颤心肌纤维化中的始动作用及机制研究
- 批准号:81601462
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Heart-brain MRI for the evaluation of hemodynamic coupling in aging and Alzheimer's disease
心脑 MRI 用于评估衰老和阿尔茨海默氏病的血流动力学耦合
- 批准号:
10571411 - 财政年份:2023
- 资助金额:
$ 56.92万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 56.92万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 56.92万 - 项目类别:
Arrhythmia-resolved 5D Flow MRI in Atrial Fibrillation and Stroke
消除心律失常的 5D Flow MRI 在心房颤动和中风中的应用
- 批准号:
10761709 - 财政年份:2022
- 资助金额:
$ 56.92万 - 项目类别:
Arrhythmia-resolved 5D Flow MRI in Atrial Fibrillation and Stroke
消除心律失常的 5D Flow MRI 在心房颤动和中风中的应用
- 批准号:
10538265 - 财政年份:2022
- 资助金额:
$ 56.92万 - 项目类别: