A New Paradigm for Rapid, Accurate Cardiac Magnetic Resonance Imaging
快速、准确的心脏磁共振成像的新范例
基本信息
- 批准号:10171886
- 负责人:
- 金额:$ 66.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAdoptedAlgorithmsArrhythmiaBackBloodBreathingCardiacCardiologyCardiovascular Diagnostic TechniquesCardiovascular DiseasesCardiovascular systemClinicalClinical TrialsDataDiagnosisDiagnosticEffectivenessEnvironmentGoalsGuidelinesHandHeartHeart DiseasesHourImageImage CompressionImaging DeviceImaging TechniquesImaging technologyIndustryInvestigationLeadMagnetic ResonanceMagnetic Resonance ImagingMethodologyMethodsModalityModelingMorphologyMotionOutcome StudyPatientsPerformancePerfusionPhysiologic pulsePhysiologicalPrevalenceProtocols documentationRecoveryResolutionRoleRouteSamplingScanningSliceSocietiesStructureSystemTimeTranslatingValidationWeightWorkbaseclinical imagingcomputerized data processingcostcost effectivenessdata acquisitiondiagnosis evaluationhead-to-head comparisonhealthy volunteerheart functionheart imagingheart rhythmhemodynamicsimaging modalityimprovednon-invasive imagingnovel strategiesparallel computerpatient populationperfusion imagingreconstructionrelative effectivenessresearch clinical testingresearch studytemporal measurementtool
项目摘要
Project Summary/Abstract
Cardiovascular disease (CVD) claims more lives and costs more than any other diagnostic group in the USA.
Cardiac magnetic resonance (CMR) is a non-invasive imaging tool that provides the most accurate and
comprehensive assessment of the cardiovascular system, yet its role in clinical cardiology remains limited. A
major impediment to wider usage of CMR is the inefficient acquisition that makes CMR exams excessively
long, often lasting for more than an hour; this diminishes its efficiency and cost effectiveness relative to other
modalities. The current paradigm offers either a prolonged segmented acquisition that requires regular cardiac
rhythm and multiple breath-holds or a fallback option of real-time, free-breathing acquisition with degraded
spatial and temporal resolutions that are below the Society for Cardiac Magnetic Resonance guidelines. The
long-term goal of this investigation is to improve the diagnosis and evaluation of cardiovascular disease by
transforming the existing segmented CMR acquisition into a more efficient protocol. The new paradigm will
(i) eliminate the need to breath-hold, (ii) be effective in patients with arrhythmia, (iii) simplify the acquisition
protocol, (iv) reduce the scan time, (v) provide whole-heart coverage, and (vi) enable spatial and temporal
resolutions that rival the resolutions provided by segmented breath-held acquisition.
In the last two decades, MRI technology has evolved rapidly. More recently, the combination of parallel MR
imaging (pMRI) and compressive sensing (CS) recovery has been featured in numerous research studies and
has delivered unprecedented acceleration. While pMRI has been adopted by the MRI industry and is available
on almost all clinical platforms, CS recovery is still a long way away from routine clinical use. To bring CS
recovery to clinical realm, there are a number of challenges that need to be addressed, including the well-
recognized issues of long computation times and tuning parameters that require case-by-case adjustment.
In this work, we will develop and validate a versatile CS recovery method, called sparsity adaptive composite
recovery (SCoRe), that provides unmatched acceleration by exploiting sparsity across multiple
representations. More importantly, SCoRe provides a data-driven tuning of all free parameters and thus
eliminates the need to hand-tune regularization weights. Also, SCoRe is amenable to fast algorithms, and we
expect the SCoRe-based image recovery to take only seconds on a GPU-based computing environment.
We hypothesize that the proposed advances in data acquisition and processing will yield a new CMR protocol
that is faster, easier for both patient and operator, and reliable over a broader spectrum of patients. We expect
to achieve this objective by providing the necessary improvements in image quality (Aim 1), by reconstructing
images in times suitable for clinical use (Aim 2), by validating the performance of the methods (Aim 3), and by
demonstrating the effectiveness and efficiency of this new approach in a clinical trial (Aim 4).
项目摘要/摘要
心血管疾病(CVD)的生活和成本比美国任何其他诊断组高。
心脏磁共振(CMR)是一种非侵入性成像工具,可提供最准确和最精确的
对心血管系统的全面评估,但其在临床心脏病学中的作用仍然有限。一个
更广泛使用CMR的主要障碍是使CMR考试过度的效率低下的收购
长时间持续一个多小时;这降低了相对于其他的效率和成本效益
方式。当前的范式提供了长时间的分段收购,需要常规心脏
节奏和多种呼吸呼吸或实时,自由呼吸获取的后备选择
在心脏磁共振准则以下的空间和时间分辨率。这
这项调查的长期目标是通过
将现有的分段CMR获取转换为更有效的协议。新范式将
(i)消除呼吸的需求,(ii)在心律不齐的患者中有效,(iii)简化了收购
协议,(iv)减少扫描时间,(v)提供全心覆盖范围,(vi)启用空间和时间
与分段呼吸收购提供的决议相媲美的决议。
在过去的二十年中,MRI技术迅速发展。最近,平行MR的组合
在许多研究和
已经提供了前所未有的加速度。虽然PMRI已被MRI行业采用,并且可以使用
在几乎所有临床平台上,CS恢复与常规临床使用还有很长的路要走。带CS
恢复到临床领域,需要解决许多挑战,包括
需要逐案调整的较长计算时间和调整参数的公认问题。
在这项工作中,我们将开发和验证一种多功能CS恢复方法,称为稀疏自适应复合材料
恢复(得分),通过跨多个稀疏性利用稀疏性,可以提供无与伦比的加速度
表示。更重要的是,得分提供了所有自由参数的数据驱动调整,从而提供了
消除了手工调整正则化重量的需求。另外,得分适合快速算法,我们
期望基于分数的图像恢复仅在基于GPU的计算环境上仅需几秒钟。
我们假设提出的数据获取和处理方面的进步将产生新的CMR协议
对于患者和操作员来说,这更快,更容易,并且在更广泛的患者中可靠。我们期望
通过重建图像质量的必要改进来实现这一目标
适用于临床使用(AIM 2)的图像,通过验证方法的性能(AIM 3)以及通过
在临床试验中证明了这种新方法的有效性和效率(AIM 4)。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cardiac and respiratory motion extraction for MRI using pilot tone-a patient study.
使用导频音进行 MRI 心脏和呼吸运动提取 - 一项患者研究。
- DOI:10.1007/s10554-023-02966-z
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Chen,Chong;Liu,Yingmin;Simonetti,OrlandoP;Tong,Matthew;Jin,Ning;Bacher,Mario;Speier,Peter;Ahmad,Rizwan
- 通讯作者:Ahmad,Rizwan
High-dimensional fast convolutional framework (HICU) for calibrationless MRI.
- DOI:10.1002/mrm.28721
- 发表时间:2021-09
- 期刊:
- 影响因子:3.3
- 作者:Zhao S;Potter LC;Ahmad R
- 通讯作者:Ahmad R
A Bayesian approach for 4D flow imaging of aortic valve in a single breath-hold.
单次屏气时主动脉瓣 4D 血流成像的贝叶斯方法。
- DOI:10.1002/mrm.27386
- 发表时间:2019
- 期刊:
- 影响因子:3.3
- 作者:Rich,Adam;Potter,LeeC;Jin,Ning;Liu,Yingmin;Simonetti,OrlandoP;Ahmad,Rizwan
- 通讯作者:Ahmad,Rizwan
Ensuring respiratory phase consistency to improve cardiac function quantification in real-time CMR.
- DOI:10.1002/mrm.29064
- 发表时间:2022-03
- 期刊:
- 影响因子:3.3
- 作者:Chen C;Chandrasekaran P;Liu Y;Simonetti OP;Tong M;Ahmad R
- 通讯作者:Ahmad R
AUTOMATIC EXTRACTION AND SIGN DETERMINATION OF RESPIRATORY SIGNAL IN REAL-TIME CARDIAC MAGNETIC RESONANCE IMAGING.
- DOI:10.1109/isbi45749.2020.9098315
- 发表时间:2020-04
- 期刊:
- 影响因子:0
- 作者:Chen C;Liu Y;Simonetti OP;Ahmad R
- 通讯作者:Ahmad R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rizwan Ahmad其他文献
Rizwan Ahmad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rizwan Ahmad', 18)}}的其他基金
A comprehensive valvular heart disease assessment with stress cardiac MRI
通过负荷心脏 MRI 进行全面的瓣膜性心脏病评估
- 批准号:
10664961 - 财政年份:2021
- 资助金额:
$ 66.34万 - 项目类别:
A comprehensive deep learning framework for MRI reconstruction
用于 MRI 重建的综合深度学习框架
- 批准号:
10382334 - 财政年份:2021
- 资助金额:
$ 66.34万 - 项目类别:
A comprehensive deep learning framework for MRI reconstruction
用于 MRI 重建的综合深度学习框架
- 批准号:
10608060 - 财政年份:2021
- 资助金额:
$ 66.34万 - 项目类别:
A comprehensive deep learning framework for MRI reconstruction
用于 MRI 重建的综合深度学习框架
- 批准号:
10211757 - 财政年份:2021
- 资助金额:
$ 66.34万 - 项目类别:
A comprehensive valvular heart disease assessment with stress cardiac MRI
通过负荷心脏 MRI 进行全面的瓣膜性心脏病评估
- 批准号:
10455412 - 财政年份:2021
- 资助金额:
$ 66.34万 - 项目类别:
A New Paradigm for Rapid, Accurate Cardiac Magnetic Resonance Imaging
快速、准确的心脏磁共振成像的新范例
- 批准号:
9330525 - 财政年份:2017
- 资助金额:
$ 66.34万 - 项目类别:
MRI T2 mapping for quantitative assessment of venous oxygen saturation
用于定量评估静脉血氧饱和度的 MRI T2 映射
- 批准号:
9325034 - 财政年份:2016
- 资助金额:
$ 66.34万 - 项目类别:
Background phase correction for quantitative cardiovascular MRI
定量心血管 MRI 的背景相位校正
- 批准号:
9182586 - 财政年份:2016
- 资助金额:
$ 66.34万 - 项目类别:
Background phase correction for quantitative cardiovascular MRI
定量心血管 MRI 的背景相位校正
- 批准号:
9297307 - 财政年份:2016
- 资助金额:
$ 66.34万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Creation of a knowledgebase of high quality assertions of the clinical actionability of somatic variants in cancer
创建癌症体细胞变异临床可行性的高质量断言知识库
- 批准号:
10555024 - 财政年份:2023
- 资助金额:
$ 66.34万 - 项目类别:
Accelerated Neuromodulation of Prefrontal Circuitry during Clozapine Treatment
氯氮平治疗期间前额叶回路的加速神经调节
- 批准号:
10726660 - 财政年份:2023
- 资助金额:
$ 66.34万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 66.34万 - 项目类别:
The WUSTL PREP post-bacc program to enhance doctoral readiness in neuroscience
WUSTL PREP post bacc 项目旨在提高神经科学博士的准备程度
- 批准号:
10611674 - 财政年份:2023
- 资助金额:
$ 66.34万 - 项目类别: