Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
基本信息
- 批准号:10725500
- 负责人:
- 金额:$ 218.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-10 至 2026-07-09
- 项目状态:未结题
- 来源:
- 关键词:AcademyAccelerationAddressAdoptedAlgorithmsAnimal BehaviorAnimalsBRAIN initiativeBehavioralCategoriesCellsCloud ComputingCodeCollaborationsCollectionCommunitiesComplexComputer softwareCustomDataData AnalysesData AnalyticsData ScienceData SetDimensionsEcosystemElectrophysiology (science)EncapsulatedEngineeringFractureFundingFutureGoalsHourIndividualInfrastructureIngestionInternetInternshipsLaboratoriesLibrariesLiteratureMachine LearningMathematicsMeasurementMental disordersMethodologyMethodsModalityModelingModernizationNeuronsNeurosciencesPopulationProceduresProcessProductivityProliferatingPublicationsPythonsReproducibilityResearchResearch PersonnelResolutionResourcesSamplingScientific Advances and AccomplishmentsSeriesServicesSoftware ToolsSortingSpecific qualifier valueSpeedStandardizationStatistical MethodsStatistical ModelsStereotypingStudentsTechniquesTestingTimeValidationVisualizationVisualization softwarecareer developmentdata fusiondata modelingdata toolsdata visualizationexperimental studyfeature extractionflexibilityhigh dimensionalityhigh end computerinnovationlearning communitymathematical analysismathematical modelnervous system disorderneuralneural circuitnovelopen sourceparallelizationprogramssoftware developmentstatistics
项目摘要
Project Summary
Many advances in modern neuroscience rely on electrophysiological recordings of large neural
populations (e.g. many hundreds of cells) or high-resolution measurements of animal behavior
(e.g. from video). These datasets have unlocked a wide range of genuinely transformational
scientific opportunities, as they enable us to draw reliable statistical inferences about individual
animal subjects at precisely encapsulated moments in time. However, these statistical models
are complex and non-trivial to implement in computer software. Over the past decade, an
initially nascent sub-field of neural data science and statistics grew precipitously, producing a
broad array of modeling approaches and a voluminous, fractured landscape of “one-off”
software packages that support a single statistical modeling approach. This exploration of
diverse statistical methodologies has been, and will continue to be, a crucial component to
advancing the field. Nevertheless, a concerted effort to consolidate existing models into a
unified and reliable software package is long overdue. Moreover, this effort must address the
exponentially growing scale of neural and behavioral data, as well as the escalating intricacy of
modeling workflows. To address these needs, this application will develop novel software
implementations of a curated set of time-tested statistical models in neuroscience. To
accommodate the exponentially growing data sizes, this software will be built on top of recently
innovated infrastructure for large-scale machine learning, including flexible procedures for
specifying GPU-accelerated computations and cloud computing frameworks to sweep across
model parameters in parallel across many machines. Finally, we will develop procedures for
neuroscience labs to share reproducible analysis workflows alongside raw datasets formatted
by BRAIN Initiative standards, including a novel framework for building URL-shareable,
interactive data visualizations that operate within any web browser. Altogether, these new
software tools will accelerate neuroscience discoveries by enabling laboratories to rapidly iterate
on in-house analyses and share them in a manner that is transparent and reproducible.
项目摘要
现代神经科学的许多进步都取决于大型神经科学的电生理记录
种群(例如数百个细胞)或动物行为的高分辨率测量
(例如,来自视频)。这些数据集解锁了各种真正的转型
科学机会,因为它们使我们能够对个人提取可靠的统计推断
动物受试者精确地封装了时间。但是,这些统计模型
在计算机软件中实现很复杂且不平淡。在过去的十年中,
最初,神经元数据科学和统计数据的新生子场精确地增长,产生
广泛的建模方法和大量的“一次性”景观
支持单个统计建模方法的软件包。这种探索
潜水员的统计方法已经并且将继续是
推进领域。然而,一致努力将现有模型巩固到一个
统一和可靠的软件包早就应该了。而且,这项工作必须解决
神经和行为数据的指数增长,以及不断升级的复杂性
建模工作流程。为了满足这些需求,该应用程序将开发新颖的软件
神经科学中一组经过时间考验的统计模型的实现。到
适应成倍增长的数据尺寸,该软件将建立在最近之上
用于大规模机器学习的创新基础设施,包括灵活的程序
指定GPU加速计算和云计算框架以扫描
在许多机器上并行的模型参数。最后,我们将制定程序
神经科学实验室与原始数据集共享可重现的分析工作流程
按大脑倡议标准,包括一个新颖的构建URL共享框架,
在任何Web浏览器中运行的交互式数据可视化。这些新的
软件工具将通过使实验室快速迭代来加速神经科学发现
在内部分析中,并以透明和繁殖的方式共享它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Scott Warren Linderman其他文献
Scott Warren Linderman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Scott Warren Linderman', 18)}}的其他基金
CRCNS: Deconstructing dynamics of motor cortex in freely moving behavior
CRCNS:解构自由运动行为中运动皮层的动力学
- 批准号:
10666693 - 财政年份:2022
- 资助金额:
$ 218.69万 - 项目类别:
CRCNS: Deconstructing dynamics of motor cortex in freely moving behavior
CRCNS:解构自由运动行为中运动皮层的动力学
- 批准号:
10610495 - 财政年份:2022
- 资助金额:
$ 218.69万 - 项目类别:
Neural representation of mating partners by male C. elegans
雄性线虫对交配伙伴的神经表征
- 批准号:
10457866 - 财政年份:2019
- 资助金额:
$ 218.69万 - 项目类别:
Neural representation of mating partners by male C. elegans
雄性线虫对交配伙伴的神经表征
- 批准号:
10685522 - 财政年份:2019
- 资助金额:
$ 218.69万 - 项目类别:
Neural representation of mating partners by male C. elegans
雄性线虫对交配伙伴的神经表征
- 批准号:
10224721 - 财政年份:2019
- 资助金额:
$ 218.69万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development and Pilot Study of Primary Care Loneliness Interventions to Prevent Suicide
预防自杀的初级保健孤独干预措施的开发和试点研究
- 批准号:
10646959 - 财政年份:2023
- 资助金额:
$ 218.69万 - 项目类别:
University of Minnesota Clinical and Translational Science Institute (UMN CTSI)
明尼苏达大学临床与转化科学研究所 (UMN CTSI)
- 批准号:
10763967 - 财政年份:2023
- 资助金额:
$ 218.69万 - 项目类别:
BiOengineering Research Education to AcceLerate Innovation in STEM
生物工程研究教育加速 STEM 创新
- 批准号:
10652133 - 财政年份:2023
- 资助金额:
$ 218.69万 - 项目类别:
Neurosurgeon Research Career Development Program (NRCDP)
神经外科医生研究职业发展计划 (NRCDP)
- 批准号:
10541698 - 财政年份:2023
- 资助金额:
$ 218.69万 - 项目类别:
TMJ SYMPHONY Systems-integrated model and mechanisms of patient-centered holistic outcomes and network-supported training and therapy
TMJ SYMPHONY 系统集成模型和以患者为中心的整体结果机制以及网络支持的培训和治疗
- 批准号:
10829112 - 财政年份:2023
- 资助金额:
$ 218.69万 - 项目类别: