Nanoscale Advanced Materials Engineering

纳米先进材料工程

基本信息

  • 批准号:
    EP/V001914/1
  • 负责人:
  • 金额:
    $ 977.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Development of materials has underpinned human and societal development for millennia, and such development has accelerated as time has passed. From the discovery of bronze through to wrought iron and then steel and polymers the visible world around has been shaped and built, relying on the intrinsic properties of these materials. In the 20th century a new materials revolution took place leading to the development of materials that are designed for their electronic (e.g. silicon), optical (e.g. glass fibres) or magnetic (e.g. recording media) properties. These materials changed the way we interact with the world and each other through the development of microelectronics (computers), the world wide web (optical fibre communications) and associated technologies.Now, two decades into the 21st century, we need to add more functionality into materials at ever smaller length-scales in order to develop ever more capable technologies with increased energy efficiency and at an acceptable manufacturing cost. In pursuing this ambition, we now find ourselves at the limit of current materials-processing technologies with an often complex interdependence of materials properties (e.g. thermal and electronic). As we approach length scales below 100s of nanometres, we have to harness quantum effects to address the need for devices with a step-change in performance and energy-efficiency, and ultimately for some cases the fundamental limitations of quantum mechanics.In this programme grant we will develop a new approach to delivering material functionalisation based on Nanoscale Advanced Materials Engineering (NAME). This approach will enable the modification of materials through the addition (doping) of single atoms through to many trillions with extreme accuracy (~20 nanometres, less than 1000th the thickness of a human hair). This will allow us to functionalise specifically a material in a highly localised location leaving the remaining material available for modification. For the first time this will offer a new approach to addressing the limitations faced by existing approaches in technology development at these small length scales. We will be able to change independently a material's electronic and thermal properties on the nanoscale, and use the precise doping to deliver enhanced optical functionality in engineered materials. Ambitiously, we aim to use NAME to control material properties which have to date proven difficult to exploit fully (e.g. quantum mechanical spin), and to control states of systems predicted but not yet directly experimentally observed or controlled (e.g. topological surface states). Ultimately, we may provide a viable route to the development of quantum bits (qubits) in materials which are a pre-requisite for the realisation of a quantum computer. Such a technology, albeit long term, is predicted to be the next great technological revolution NAME is a collaborative programme between internationally leading UK researchers from the Universities of Manchester, Leeds and Imperial College London, who together lead the Henry Royce Institute research theme identified as 'Atoms to Devices'. Together they have already established the required substantial infrastructure and state-of-the-art facilities through investment from Royce, the EPSRC and each University partner. The programme grant will provide the resource to assemble the wider team required to deliver the NAME vision, including UK academics, research fellows, and postdoctoral researchers, supported by PhD students funded by the Universities. The programme grant also has significant support from wider academia and industry based both within the UK and internationally.
材料的开发为数千年的人类和社会发展提供了支持,随着时间的流逝,这种发展已经加速。从发现青铜到锻铁到钢和聚合物,周围可见的世界已经依赖于这些材料的内在特性。在20世纪,发生了一场新的材料革命,导致开发为其电子(例如硅),光学(例如玻璃纤维)或磁性(例如记录介质)特性设计的材料。这些材料通过开发微电子(计算机),万维网(光纤通信)和相关的技术改变了我们与世界和彼此之间互动的方式。现在,在21世纪二十年来,我们需要在较小的长度范围内将更多的功能添加到材料中,以便开发出更大的能源能源效率和可接受成本的能力更高的技术。在追求这一野心时,我们现在发现自己处于材料特性(例如热和电子)通常相互依存的当前材料处理技术的极限。当我们接近低于100纳米的长度尺度时,我们必须利用量子效应,以满足对性能和能源效率逐步变化的设备的需求,最终在某些情况下,量子力学的基本限制。在该程序赠款中,我们将开发一种基于Nansoscale高级材料工程(名称)的新方法来传递基于Nansoscale高级材料(名称)。这种方法将通过将单个原子的添加(掺杂)添加到数万亿(约20纳米,小于人毛的厚度),从而使材料通过(掺杂)的添加(掺杂)进行修饰。这将使我们能够在高度局部的位置中专门使用材料,使剩余的材料可用于修改。这将首次提供一种新的方法来解决这些小长度尺度上技术开发方法所面临的局限性。我们将能够在纳米级上独立更改材料的电子和热性能,并使用精确的掺杂来提供工程材料中增强的光学功能。雄心勃勃的是,我们旨在使用名称来控制必须证明难以充分利用的材料特性(例如量子机械旋转),并控制预测但尚未直接在实验上观察或控制的系统状态(例如,拓扑表面状态)。最终,我们可能会为材料中量子位(Qubits)的开发提供可行的途径,这是实现量子计算机的先决条件。这种技术(尽管长期以来)被预计将是下一个伟大的技术革命名称,是来自曼彻斯特大学,利兹大学和伦敦帝国学院的国际领先的英国研究人员之间的合作计划,他们共同领导了亨利·罗伊斯研究所研究主题,被确定为“原子到设备”。他们已经通过Royce,EPSRC和每个大学合作伙伴的投资共同建立了所需的大量基础设施和最先进的设施。该计划赠款将提供资源,以组装提供更广泛的团队,以提供愿景名称,包括英国学者,研究研究员和博士后研究人员,并由大学资助的博士生支持。该计划赠款还基于英国和国际上的更广泛的学术界和行业获得了重大支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Formation of Millimeter Waves with Electrically Tunable Orbital Angular Momentum
  • DOI:
    10.3390/coatings11050569
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    A. Altynnikov;R. Platonov;A. Tumarkin;P. Petrov;A. Kozyrev
  • 通讯作者:
    A. Altynnikov;R. Platonov;A. Tumarkin;P. Petrov;A. Kozyrev
N-heteroacenes as an organic gain medium for room temperature masers
N-杂并苯作为室温微波激射器的有机增益介质
  • DOI:
    10.26434/chemrxiv-2023-j0rj6-v2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Attwood M
  • 通讯作者:
    Attwood M
N-Heteroacenes as an Organic Gain Medium for Room-Temperature Masers.
  • DOI:
    10.1021/acs.chemmater.3c00640
  • 发表时间:
    2023-06-13
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Attwood, Max;Xu, Xiaotian;Newns, Michael;Meng, Zhu;Ingle, Rebecca A.;Wu, Hao;Chen, Xi;Xu, Weidong;Ng, Wern;Abiola, Temitope T.;Stavros, Vasilios G.;Oxborrow, Mark
  • 通讯作者:
    Oxborrow, Mark
A High-Resolution Versatile Focused Ion Implantation Platform for Nanoscale Engineering
用于纳米工程的高分辨率多功能聚焦离子注入平台
Perspective on room-temperature solid-state masers
  • DOI:
    10.1063/5.0061330
  • 发表时间:
    2021-10-04
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Arroo, Daan M.;Alford, Neil McN.;Breeze, Jonathan D.
  • 通讯作者:
    Breeze, Jonathan D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Curry其他文献

Richard Curry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Curry', 18)}}的其他基金

Supporting World-Class Labs at the University of Manchester (2022)
支持曼彻斯特大学世界一流的实验室(2022)
  • 批准号:
    EP/X035093/1
  • 财政年份:
    2023
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Future Laser Manufacturing of Nanostructured Metal Oxide Semiconductors for Functional Materials and Devices
用于功能材料和器件的纳米结构金属氧化物半导体的未来激光制造
  • 批准号:
    EP/V008188/1
  • 财政年份:
    2021
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Magnetically-Doped III-V Semiconductor Nanostructures
磁掺杂 III-V 族半导体纳米结构
  • 批准号:
    NE/T014792/1
  • 财政年份:
    2020
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
  • 批准号:
    EP/T01914X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Platform for Nanoscale Advanced Materials Engineering (P-NAME)
纳米先进材料工程平台 (P-NAME)
  • 批准号:
    EP/R025576/1
  • 财政年份:
    2018
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
  • 批准号:
    EP/N020057/2
  • 财政年份:
    2017
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
  • 批准号:
    EP/M015513/2
  • 财政年份:
    2017
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Quantum technology capital: Multi-species single-ion implantation
量子技术资本:多物种单离子注入
  • 批准号:
    EP/N015215/1
  • 财政年份:
    2016
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
  • 批准号:
    EP/N020057/1
  • 财政年份:
    2016
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
  • 批准号:
    EP/M015513/1
  • 财政年份:
    2015
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant

相似国自然基金

IUTAM研讨会-先进材料和结构中的多物理场耦合力学问题研讨会
  • 批准号:
    12342008
  • 批准年份:
    2023
  • 资助金额:
    8 万元
  • 项目类别:
    专项基金项目
基于拓扑解耦-深度学习的先进复合材料损伤模式分类方法研究
  • 批准号:
    52205171
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
芯片制造相关的界面(电)化学及材料微区结构的先进红外光谱研究
  • 批准号:
    22241201
  • 批准年份:
    2022
  • 资助金额:
    270.00 万元
  • 项目类别:
    专项项目
芯片制造相关的界面(电)化学及材料微区结构的先进红外光谱研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    270 万元
  • 项目类别:
基于拓扑解耦-深度学习的先进复合材料损伤模式分类方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Synergistic Material-Microbe Interface towards Faster, Deeper, and Air-tolerant Reductive Dehalogenation
协同材料-微生物界面实现更快、更深、耐空气的还原脱卤
  • 批准号:
    10317116
  • 财政年份:
    2021
  • 资助金额:
    $ 977.54万
  • 项目类别:
MRI: Acquisition of a Next Generation Small-Angle X-ray Scattering System for Nanoscale Characterization and Development of Advanced Functional Materials
MRI:获取下一代小角度 X 射线散射系统,用于纳米级表征和先进功能材料的开发
  • 批准号:
    2018258
  • 财政年份:
    2020
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Standard Grant
Enabling the Preparation of Advanced Materials through Analysis and Control of the Interfacial Chemistries of Nanoscale Materials
通过分析和控制纳米材料的界面化学来制备先进材料
  • 批准号:
    RGPIN-2015-06763
  • 财政年份:
    2019
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Discovery Grants Program - Individual
Age-related Control of Bone Quality by Osteocyte TGF-beta Signaling
骨细胞 TGF-β 信号对骨质量的年龄相关控制
  • 批准号:
    10021392
  • 财政年份:
    2019
  • 资助金额:
    $ 977.54万
  • 项目类别:
Nanoscale Engineering of Advanced Materials for Future Photonic and Quantum Devices
用于未来光子和量子器件的先进材料的纳米工程
  • 批准号:
    2314778
  • 财政年份:
    2019
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了