Nanoscale Advanced Materials Engineering

纳米先进材料工程

基本信息

  • 批准号:
    EP/V001914/1
  • 负责人:
  • 金额:
    $ 977.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Development of materials has underpinned human and societal development for millennia, and such development has accelerated as time has passed. From the discovery of bronze through to wrought iron and then steel and polymers the visible world around has been shaped and built, relying on the intrinsic properties of these materials. In the 20th century a new materials revolution took place leading to the development of materials that are designed for their electronic (e.g. silicon), optical (e.g. glass fibres) or magnetic (e.g. recording media) properties. These materials changed the way we interact with the world and each other through the development of microelectronics (computers), the world wide web (optical fibre communications) and associated technologies.Now, two decades into the 21st century, we need to add more functionality into materials at ever smaller length-scales in order to develop ever more capable technologies with increased energy efficiency and at an acceptable manufacturing cost. In pursuing this ambition, we now find ourselves at the limit of current materials-processing technologies with an often complex interdependence of materials properties (e.g. thermal and electronic). As we approach length scales below 100s of nanometres, we have to harness quantum effects to address the need for devices with a step-change in performance and energy-efficiency, and ultimately for some cases the fundamental limitations of quantum mechanics.In this programme grant we will develop a new approach to delivering material functionalisation based on Nanoscale Advanced Materials Engineering (NAME). This approach will enable the modification of materials through the addition (doping) of single atoms through to many trillions with extreme accuracy (~20 nanometres, less than 1000th the thickness of a human hair). This will allow us to functionalise specifically a material in a highly localised location leaving the remaining material available for modification. For the first time this will offer a new approach to addressing the limitations faced by existing approaches in technology development at these small length scales. We will be able to change independently a material's electronic and thermal properties on the nanoscale, and use the precise doping to deliver enhanced optical functionality in engineered materials. Ambitiously, we aim to use NAME to control material properties which have to date proven difficult to exploit fully (e.g. quantum mechanical spin), and to control states of systems predicted but not yet directly experimentally observed or controlled (e.g. topological surface states). Ultimately, we may provide a viable route to the development of quantum bits (qubits) in materials which are a pre-requisite for the realisation of a quantum computer. Such a technology, albeit long term, is predicted to be the next great technological revolution NAME is a collaborative programme between internationally leading UK researchers from the Universities of Manchester, Leeds and Imperial College London, who together lead the Henry Royce Institute research theme identified as 'Atoms to Devices'. Together they have already established the required substantial infrastructure and state-of-the-art facilities through investment from Royce, the EPSRC and each University partner. The programme grant will provide the resource to assemble the wider team required to deliver the NAME vision, including UK academics, research fellows, and postdoctoral researchers, supported by PhD students funded by the Universities. The programme grant also has significant support from wider academia and industry based both within the UK and internationally.
几千年来,材料的发展支撑着人类和社会的发展,并且随着时间的推移,这种发展正在加速。从青铜的发现到锻铁,再到钢铁和聚合物,周围的可见世界都是依靠这些材料的内在特性而被塑造和建造的。 20 世纪发生了一场新材料革命,导致了针对电子(例如硅)、光学(例如玻璃纤维)或磁性(例如记录介质)特性而设计的材料的开发。通过微电子(计算机)、万维网(光纤通信)和相关技术的发展,这些材料改变了我们与世界和彼此互动的方式。现在,进入 21 世纪二十年,我们需要添加更多功能转化为更小长度尺寸的材料,以开发更强大的技术,提高能源效率并以可接受的制造成本。在追求这一目标的过程中,我们现在发现自己处于当前材料加工技术的极限,材料特性(例如热特性和电子特性)往往具有复杂的相互依赖性。当我们接近 100 纳米以下的长度尺度时,我们必须利用量子效应来满足对性能和能源效率发生阶跃变化的设备的需求,并最终在某些情况下解决量子力学的基本局限性。我们将开发一种基于纳米先进材料工程(NAME)的材料功能化新方法。这种方法将能够通过添加(掺杂)数万亿个单原子来对材料进行极其精确的改性(约 20 纳米,不到人类头发厚度的千分之一)。这将使我们能够在高度本地化的位置专门对一种材料进行功能化,从而使剩余的材料可供修改。这将首次提供一种新方法来解决这些小尺度技术开发中现有方法所面临的局限性。我们将能够在纳米尺度上独立改变材料的电子和热性能,并使用精确的掺杂来增强工程材料的光学功能。我们雄心勃勃,目标是使用 NAME 来控制迄今为止难以充分利用的材料特性(例如量子力学自旋),并控制预测但尚未直接通过实验观察或控制的系统状态(例如拓扑表面状态)。最终,我们可以提供一条可行的途径来开发材料中的量子位(qubits),这是实现量子计算机的先决条件。这种技术虽然是长期的,但预计将成为下一次伟大的技术革命。 NAME 是来自曼彻斯特大学、利兹大学和伦敦帝国理工学院的国际领先英国研究人员之间的合作项目,他们共同领导亨利·莱斯研究所的研究主题,确定为“原子到设备”。通过罗伊斯、EPSRC 和各大学合作伙伴的投资,他们已经共同建立了所需的大量基础设施和最先进的设施。该计划拨款将提供资源来组建实现 NAME 愿景所需的更广泛团队,包括英国学者、研究员和博士后研究人员,并由大学资助的博士生提供支持。该计划拨款还得到了英国和国际上更广泛的学术界和工业界的大力支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Formation of Millimeter Waves with Electrically Tunable Orbital Angular Momentum
  • DOI:
    10.3390/coatings11050569
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    A. Altynnikov;R. Platonov;A. Tumarkin;P. Petrov;A. Kozyrev
  • 通讯作者:
    A. Altynnikov;R. Platonov;A. Tumarkin;P. Petrov;A. Kozyrev
N-heteroacenes as an organic gain medium for room temperature masers
N-杂并苯作为室温微波激射器的有机增益介质
  • DOI:
    10.26434/chemrxiv-2023-j0rj6-v2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Attwood M
  • 通讯作者:
    Attwood M
N-Heteroacenes as an Organic Gain Medium for Room-Temperature Masers.
  • DOI:
    10.1021/acs.chemmater.3c00640
  • 发表时间:
    2023-06-13
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Attwood, Max;Xu, Xiaotian;Newns, Michael;Meng, Zhu;Ingle, Rebecca A.;Wu, Hao;Chen, Xi;Xu, Weidong;Ng, Wern;Abiola, Temitope T.;Stavros, Vasilios G.;Oxborrow, Mark
  • 通讯作者:
    Oxborrow, Mark
A High-Resolution Versatile Focused Ion Implantation Platform for Nanoscale Engineering
用于纳米工程的高分辨率多功能聚焦离子注入平台
Perspective on room-temperature solid-state masers
  • DOI:
    10.1063/5.0061330
  • 发表时间:
    2021-10-04
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Arroo, Daan M.;Alford, Neil McN.;Breeze, Jonathan D.
  • 通讯作者:
    Breeze, Jonathan D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Curry其他文献

Richard Curry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Curry', 18)}}的其他基金

Supporting World-Class Labs at the University of Manchester (2022)
支持曼彻斯特大学世界一流的实验室(2022)
  • 批准号:
    EP/X035093/1
  • 财政年份:
    2023
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Future Laser Manufacturing of Nanostructured Metal Oxide Semiconductors for Functional Materials and Devices
用于功能材料和器件的纳米结构金属氧化物半导体的未来激光制造
  • 批准号:
    EP/V008188/1
  • 财政年份:
    2021
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Magnetically-Doped III-V Semiconductor Nanostructures
磁掺杂 III-V 族半导体纳米结构
  • 批准号:
    NE/T014792/1
  • 财政年份:
    2020
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
  • 批准号:
    EP/T01914X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Platform for Nanoscale Advanced Materials Engineering (P-NAME)
纳米先进材料工程平台 (P-NAME)
  • 批准号:
    EP/R025576/1
  • 财政年份:
    2018
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
  • 批准号:
    EP/N020057/2
  • 财政年份:
    2017
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
  • 批准号:
    EP/M015513/2
  • 财政年份:
    2017
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Quantum technology capital: Multi-species single-ion implantation
量子技术资本:多物种单离子注入
  • 批准号:
    EP/N015215/1
  • 财政年份:
    2016
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
  • 批准号:
    EP/N020057/1
  • 财政年份:
    2016
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
  • 批准号:
    EP/M015513/1
  • 财政年份:
    2015
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Research Grant

相似国自然基金

IUTAM研讨会-先进材料和结构中的多物理场耦合力学问题研讨会
  • 批准号:
    12342008
  • 批准年份:
    2023
  • 资助金额:
    8 万元
  • 项目类别:
    专项基金项目
芯片制造相关的界面(电)化学及材料微区结构的先进红外光谱研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    270 万元
  • 项目类别:
基于拓扑解耦-深度学习的先进复合材料损伤模式分类方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向先进存储应用的氧化锆单晶反铁电新材料研究
  • 批准号:
    62274003
  • 批准年份:
    2022
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
先进金属结构材料中界面偏聚与固态相变的多尺度研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Synergistic Material-Microbe Interface towards Faster, Deeper, and Air-tolerant Reductive Dehalogenation
协同材料-微生物界面实现更快、更深、耐空气的还原脱卤
  • 批准号:
    10317116
  • 财政年份:
    2021
  • 资助金额:
    $ 977.54万
  • 项目类别:
MRI: Acquisition of a Next Generation Small-Angle X-ray Scattering System for Nanoscale Characterization and Development of Advanced Functional Materials
MRI:获取下一代小角度 X 射线散射系统,用于纳米级表征和先进功能材料的开发
  • 批准号:
    2018258
  • 财政年份:
    2020
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Standard Grant
Enabling the Preparation of Advanced Materials through Analysis and Control of the Interfacial Chemistries of Nanoscale Materials
通过分析和控制纳米材料的界面化学来制备先进材料
  • 批准号:
    RGPIN-2015-06763
  • 财政年份:
    2019
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Discovery Grants Program - Individual
Age-related Control of Bone Quality by Osteocyte TGF-beta Signaling
骨细胞 TGF-β 信号对骨质量的年龄相关控制
  • 批准号:
    10021392
  • 财政年份:
    2019
  • 资助金额:
    $ 977.54万
  • 项目类别:
Nanoscale Engineering of Advanced Materials for Future Photonic and Quantum Devices
用于未来光子和量子器件的先进材料的纳米工程
  • 批准号:
    2314778
  • 财政年份:
    2019
  • 资助金额:
    $ 977.54万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了