Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
基本信息
- 批准号:EP/T01914X/1
- 负责人:
- 金额:$ 97.71万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technology underpins our society and economy and devices are constantly evolving, becoming smaller, faster, and 'smarter'. However, current technologies are fast approaching their physical limit and suffer from high, inefficient power consumption and poor energy storage. Integrated photonic, electronic and quantum technologies have the potential to disrupt these existing technologies, providing '21st-century products' with improved performance including energy efficiency. These devices will have a broad range of applications and will impact several sectors, such as healthcare, defence and security, ICT, and clean energy. Advanced functional materials, including graphene, 2D materials and semiconductor nanostructures, are the building blocks of these devices with the potential to deliver a step-change in performance through exploitation of novel quantum effects. An in-depth understanding of their electronic, photonic and spintronic properties, and how they may be controlled, enhanced and exploited is therefore essential.Although several characterisation techniques exist it still remains difficult to obtain a complete picture of their optoelectronic/spintronic behaviour. Often a combination of methodologies are required to extract device parameters, such as charge carrier mobility and lifetime; and these techniques have their own limitations - they can be destructive, only perform ensemble measurements, or only operate at room temperature and ambient pressure. Notably, material characterisation remains challenging on nanometre length scales, with the majority of techniques limited in resolution to the micron scale. As the majority of devices rely on controlling and designing electronic behaviour at the nanoscale (e.g. pn junctions), nanoscale spatial resolution is essential for accelerating device development. There is therefore an urgent need for state-of-the-art research infrastructure that can provide nanometre spatial resolution and combine the strengths of current methodologies to investigate materials over a large parameter range.The proposed investment will establish a new national facility for advanced nanoscale material characterisation and will provide the 'missing tool' required to conduct simultaneous imaging and spectroscopy at 3 extremes: ultrafast (<1ps) timescales, nanoscale (<30nm) length scales, and low temperatures (<10K). By combining ultrafast THz and midinfrared (MIR) spectroscopy with cryogenic scattering-type near-field optical microscopy, this facility will provide an exclusive tomographic tool that allows surface-sensitive, non-destructive optoelectronic characterisation of individual nanomaterials over a temperature range of 4.2-300K. As the THz and MIR frequency range encompasses the energy range of several fundamental quasiparticles (e.g. plasmons, free electrons and holes, and magnons), this capability will open up a new parameter range for investigating low-energy excitations in advanced functional materials, including III-V nanowires, 2D materials, topological insulators, and chalcogenides. It will allow differential depth-profiling and 3D mapping of the local dielectric function, electrical conductivity, chemical composition, stress/strain fields with <30nm spatial resolution, and enable investigation of nanoscale photoinduced carrier dynamics and ultrafast vibrational dynamics with <1ps temporal resolution. The facility will be unique to the UK/EU and will provide unprecedented capability for advanced functional materials research. Access to the tool will be made available to UK academics and industry undertaking research in this area. The system will be housed within the UK National Laboratory for Advanced Materials (the Henry Royce Institute) at the University of Manchester and will link with other key materials research infrastructure, such as P-NAME and Royce MBE systems, to form a key chain in the feedback loop between materials optimisation and device development.
我们的社会,经济和设备的基础不断发展,变得更小,更快,更聪明。但是,当前的技术正在快速接近其身体极限,并且遭受高效率,功耗较低和能源不良的损失。集成的光子,电子和量子技术有可能破坏这些现有技术,从而提供“ 21世纪产品”,并提高了包括能效的性能。这些设备将具有广泛的应用程序,并将影响多个部门,例如医疗保健,国防和安全,ICT和清洁能源。先进的功能材料,包括石墨烯,2D材料和半导体纳米结构,是这些设备的构建块,有可能通过开发新的量子效应来实现性能的逐步变化。因此,深入了解其电子,光子和自旋特性,以及如何控制,增强和利用它们是必不可少的。尽管存在几种特征技术,但仍然很难获得光电/自旋行为的完整图片。通常需要组合提取设备参数,例如电荷载体迁移率和寿命;这些技术有自己的局限性 - 它们可能具有破坏性,只能执行合奏测量,或者仅在室温和环境压力下运行。值得注意的是,材料表征在纳米长度尺度上仍然具有挑战性,大多数技术限制了微米量表。由于大多数设备都依赖于纳米级(例如PN连接)控制和设计电子行为,因此纳米级空间分辨率对于加速设备开发至关重要。 There is therefore an urgent need for state-of-the-art research infrastructure that can provide nanometre spatial resolution and combine the strengths of current methodologies to investigate materials over a large parameter range.The proposed investment will establish a new national facility for advanced nanoscale material characterisation and will provide the 'missing tool' required to conduct simultaneous imaging and spectroscopy at 3 extremes: ultrafast (<1ps) timescales, nanoscale (<30nm)长度尺度和低温(<10k)。通过将Ultrafast THZ和中红外(MIR)光谱与低温散射型近场光学显微镜相结合,该设施将提供一个独特的层析成像工具,允许在4.2-300k的温度范围内对单个纳米材料的表面敏感性,非破坏性的光电表征进行表面敏感性。由于THZ和MIR频率范围涵盖了几个基本准颗粒(例如等离子,免费电子和孔以及木元素)的能量范围,因此该功能将开辟一个新的参数范围,用于研究先进功能材料中低能的激发,包括IIII-V纳米含量,2D材料,2D材料,2D材料,2D材料,拓扑胰岛素剂和chalcogenides和chalcogenides。它将允许对局部介电函数,电导率,化学成分,应力/应变场的差异深度进行绘制,并具有<1PS临时分辨率的纳米级光诱导的载体动力学和超快振动动力学。该设施将是英国/欧盟独有的,并将为先进的功能材料研究提供前所未有的能力。该工具的访问将提供给英国的学者和行业从事该领域的研究。该系统将安置在曼彻斯特大学英国国家高级材料实验室(亨利·罗伊斯研究所)中,并将与其他关键材料研究基础设施(例如P-Name和Royce MBE Systems)联系起来,以在材料优化和设备开发之间形成反馈回路中的关键链。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topological materials for helicity-dependent THz emission
- DOI:10.1109/irmmw-thz57677.2023.10299323
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:A. Mannan;Y. Saboon;C. Q. Xia;D. Damry;P. Schoenherr;D. Prabhakaran;L. M. Herz;T. Hesjedal;M. B. Johnston;J. Boland
- 通讯作者:A. Mannan;Y. Saboon;C. Q. Xia;D. Damry;P. Schoenherr;D. Prabhakaran;L. M. Herz;T. Hesjedal;M. B. Johnston;J. Boland
Nanowires in Terahertz Photonics: Harder, Better, Stronger, Faster
- DOI:10.1109/irmmw-thz57677.2023.10299262
- 发表时间:2023-01-01
- 期刊:
- 影响因子:0
- 作者:Joyce,Hannah J.;Adeyemo,Stephanie .;Johnston,Michael B.
- 通讯作者:Johnston,Michael B.
Surface Oxidisation Layer Identification of Indium Nitride Nanoparticles via s-SNOM
通过 s-SNOM 识别氮化铟纳米粒子的表面氧化层
- DOI:10.1109/irmmw-thz57677.2023.10298963
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liu X
- 通讯作者:Liu X
Investigating the Effect of Crystal Morphology on Optoelectronic Properties of Zinc Phosphide Thin Films via Optical-pump Terahertz Probe Spectroscopy
通过光泵太赫兹探针光谱研究晶体形态对磷化锌薄膜光电性能的影响
- DOI:10.1109/irmmw-thz57677.2023.10299122
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Huang Y
- 通讯作者:Huang Y
The 2023 terahertz science and technology roadmap
- DOI:10.1088/1361-6463/acbe4c
- 发表时间:2023-06-01
- 期刊:
- 影响因子:3.4
- 作者:Leitenstorfer, Alfred;Moskalenko, Andrey S.;Cunningham, John
- 通讯作者:Cunningham, John
共 6 条
- 1
- 2
Richard Curry的其他基金
Supporting World-Class Labs at the University of Manchester (2022)
支持曼彻斯特大学世界一流的实验室(2022)
- 批准号:EP/X035093/1EP/X035093/1
- 财政年份:2023
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Research GrantResearch Grant
Future Laser Manufacturing of Nanostructured Metal Oxide Semiconductors for Functional Materials and Devices
用于功能材料和器件的纳米结构金属氧化物半导体的未来激光制造
- 批准号:EP/V008188/1EP/V008188/1
- 财政年份:2021
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Research GrantResearch Grant
Nanoscale Advanced Materials Engineering
纳米先进材料工程
- 批准号:EP/V001914/1EP/V001914/1
- 财政年份:2021
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Research GrantResearch Grant
Magnetically-Doped III-V Semiconductor Nanostructures
磁掺杂 III-V 族半导体纳米结构
- 批准号:NE/T014792/1NE/T014792/1
- 财政年份:2020
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Research GrantResearch Grant
Platform for Nanoscale Advanced Materials Engineering (P-NAME)
纳米先进材料工程平台 (P-NAME)
- 批准号:EP/R025576/1EP/R025576/1
- 财政年份:2018
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Research GrantResearch Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:EP/N020057/2EP/N020057/2
- 财政年份:2017
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Research GrantResearch Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:EP/M015513/2EP/M015513/2
- 财政年份:2017
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Research GrantResearch Grant
Quantum technology capital: Multi-species single-ion implantation
量子技术资本:多物种单离子注入
- 批准号:EP/N015215/1EP/N015215/1
- 财政年份:2016
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Research GrantResearch Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:EP/N020057/1EP/N020057/1
- 财政年份:2016
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Research GrantResearch Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:EP/M015513/1EP/M015513/1
- 财政年份:2015
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Research GrantResearch Grant
相似国自然基金
飞秒干涉散射(Femto-iSCAT)显微镜的研制及单颗粒超快动力学成像测量
- 批准号:22174064
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
基于激光尾波场加速的超快辐射源及瞬态X射线成像研究
- 批准号:11904377
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
利用非线性康普顿散射产生超短偏振伽玛射线脉冲和自旋极化电子束的机理研究
- 批准号:11874295
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
同步辐射超快X射线散射原位研究拉伸诱导的聚乳酸熔体结晶行为
- 批准号:51803189
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于光学超材料的针尖增强飞秒受激拉曼散射显微成像研究
- 批准号:61805165
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A New Effect in Ultrafast X-ray Scattering
超快X射线散射的新效应
- 批准号:EP/V049240/2EP/V049240/2
- 财政年份:2022
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Research GrantResearch Grant
Direct Electron Detection Camera for Next-Generation Sensitivity in Ultrafast Electron Scattering Measurements
直接电子探测相机可提高超快电子散射测量中的下一代灵敏度
- 批准号:RTI-2023-00449RTI-2023-00449
- 财政年份:2022
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Research Tools and InstrumentsResearch Tools and Instruments
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:RGPIN-2019-06001RGPIN-2019-06001
- 财政年份:2022
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Ultrafast Electron Scattering to Understand and Control Material Properties
通过超快电子散射了解和控制材料特性
- 批准号:RGPIN-2019-06001RGPIN-2019-06001
- 财政年份:2021
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
A New Effect in Ultrafast X-ray Scattering
超快X射线散射的新效应
- 批准号:EP/V049240/1EP/V049240/1
- 财政年份:2021
- 资助金额:$ 97.71万$ 97.71万
- 项目类别:Research GrantResearch Grant