Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
基本信息
- 批准号:EP/N020057/1
- 负责人:
- 金额:$ 48.56万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the 20th century, the development of silicon-based electronics revolutionised the world, becoming the most pervasive technology behind modern-day life. In the 21st century, it is envisaged that technology will move to the use of light (photons) together with, or in place of, electrons, providing a dramatic increase in the speed and quantity of information processing whilst also reducing the energy required to do so. Making this transition to an all optical 'photonic' technology has proved to be a complex task, as the material of choice for electronics, silicon, is limited in its ability to control light. In the search for alternative materials, a class of glasses called amorphous chalcogenides (a-ChGs) have shown remarkable promise, to the point where they have been referred to as the 'optical equivalent of silicon'. Chalcogenides are materials which contain one or more of the elements sulfur, selenium or tellurium as a major constituent. These materials are already widely used in applications such as photovoltaics, memory (e.g. DVDs), advanced optical devices (e.g. lasers), and in some thermoelectric generation systems. It is accepted that the move to all-optical technologies will require an intermediate stage where information processing is undertaken using a hybrid 'optoelectronic' system. This provides a strong and compelling argument for the development of a-ChGs, as they can be deposited on Si to form a hybrid approach en-route to their use as an all-optical platform.Whilst the optical properties of a-ChGs may be controlled and modified it has proved to be extremely difficult to modify their electronic properties during the material preparation, which has typically involved melting at high temperatures. Any impurities that are added to these materials in order to change the electronic behaviour are ineffective under these conditions due to the ability of the ChG material to reorder itself when melted, and so negate the desired doping effect. We have successfully pioneered a method to modify their properties by introducing dopants into a-ChGs below their melting temperature, thus not allowing the material to reorder, using ion-implantation. This method of doping allows precise control of the type of impurity introduced and is widely used in silicon technologies. As a result of this work, we have demonstrated the ability to reverse the majority charge carrier type from holes (p-type) to electrons (n-type) in a spatially localised way. This step-changing achievement enabled us to demonstrate the fabrication of optically active pn-junctions in a-ChGs, which will act as the enabling catalyst for the development of future photonic technologies.In this project we will seek to develop a full understanding of the process of carrier-type reversal on the atomic scale, and use this information to optimize it, and the materials that are to be modified, so as to add further functionality. We will also develop the required advanced engineering methods which relate to the control and activation of dopants introduced using ion-implantation into a-ChGs. Together, these will enable the demonstration of a series of optoelectronic devices demonstrating the key functionalities required to build an integrated optoelectronic technology. This programme will consolidate the position of the UK as the world leader in the field of non-equilibrium doping of chalcogenides. We will, in this way, champion these materials in the world's transition to beyond CMOS technology and therefore directly contribute to the continuing growth of the knowledge economy. We will train the next generation of scientists and engineers in state-of-the-art techniques to ensure that the UK maintains the expertise base required for this purpose, aim to ensure that the impact of this work is maximised and accelerated where possible, and communicate the results widely, including to all stakeholders in this research.
20 世纪,硅基电子产品的发展彻底改变了世界,成为现代生活背后最普遍的技术。在 21 世纪,预计技术将转向使用光(光子)与电子一起使用或代替电子,从而大幅提高信息处理的速度和数量,同时减少处理信息所需的能量。所以。事实证明,向全光学“光子”技术的转变是一项复杂的任务,因为电子器件所选择的材料硅的控制光的能力有限。在寻找替代材料的过程中,一类称为非晶硫族化物(a-ChGs)的玻璃显示出了非凡的前景,以至于它们被称为“硅的光学等效物”。硫族化物是含有硫、硒或碲元素中的一种或多种作为主要成分的材料。这些材料已广泛应用于光伏、存储器(例如 DVD)、先进光学设备(例如激光器)和一些热电发电系统等应用中。人们普遍认为,向全光学技术的转变将需要一个中间阶段,其中使用混合“光电”系统进行信息处理。这为 a-ChG 的开发提供了强有力的、令人信服的论据,因为它们可以沉积在 Si 上,形成一种混合方法,以用作全光学平台。虽然 a-ChG 的光学特性可能是事实证明,在材料制备过程中改变其电子特性极其困难,这通常涉及高温熔化。在这些条件下,为了改变电子行为而添加到这些材料中的任何杂质都是无效的,因为 ChG 材料在熔化时能够自行重新排序,从而抵消了所需的掺杂效果。我们成功地开创了一种通过离子注入将掺杂剂引入到低于熔化温度的 a-ChG 中来改变其性能的方法,从而不允许材料重新排序。这种掺杂方法可以精确控制引入的杂质类型,并广泛应用于硅技术中。这项工作的结果是,我们展示了以空间局部方式将多数电荷载流子类型从空穴(p 型)反转为电子(n 型)的能力。这一突破性的成就使我们能够展示 a-ChG 中光学活性 pn 结的制造,这将成为未来光子技术发展的催化剂。在这个项目中,我们将寻求对 a-ChG 的光学活性 pn 结的制造有一个全面的了解。原子尺度上的载流子类型反转过程,并利用这些信息来优化它以及要修改的材料,从而添加更多功能。我们还将开发所需的先进工程方法,这些方法涉及使用离子注入到 a-ChG 中引入的掺杂剂的控制和激活。这些将共同展示一系列光电器件,展示构建集成光电技术所需的关键功能。该计划将巩固英国在硫属化物非平衡掺杂领域的世界领先地位。通过这种方式,我们将在世界向超越 CMOS 技术的过渡中支持这些材料,从而直接为知识经济的持续增长做出贡献。我们将用最先进的技术培训下一代科学家和工程师,以确保英国保持为此目的所需的专业知识基础,旨在确保这项工作的影响在可能的情况下最大化并加速,并且广泛传达结果,包括向本研究的所有利益相关者传达结果。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optical and electrical properties of alkaline-doped and As-alloyed amorphous selenium films
- DOI:10.1007/s10854-019-01386-x
- 发表时间:2019-09-01
- 期刊:
- 影响因子:2.8
- 作者:Gunes, O.;Koughia, C.;Kasap, S. O.
- 通讯作者:Kasap, S. O.
Photo-Seebeck study of amorphous germanium-tellurium-oxide films
非晶氧化锗碲薄膜的光塞贝克研究
- DOI:10.1007/s10854-020-04702-y
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Gholizadeh A
- 通讯作者:Gholizadeh A
Frequency- and time-resolved photocurrents in vacuum-deposited stabilised a-Se films: the role of valence alternation defects
真空沉积稳定 a-Se 薄膜中的频率和时间分辨光电流:价态交替缺陷的作用
- DOI:10.1007/s10854-020-04111-1
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Jacobs J
- 通讯作者:Jacobs J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Curry其他文献
Richard Curry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Curry', 18)}}的其他基金
Supporting World-Class Labs at the University of Manchester (2022)
支持曼彻斯特大学世界一流的实验室(2022)
- 批准号:
EP/X035093/1 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Future Laser Manufacturing of Nanostructured Metal Oxide Semiconductors for Functional Materials and Devices
用于功能材料和器件的纳米结构金属氧化物半导体的未来激光制造
- 批准号:
EP/V008188/1 - 财政年份:2021
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Nanoscale Advanced Materials Engineering
纳米先进材料工程
- 批准号:
EP/V001914/1 - 财政年份:2021
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Magnetically-Doped III-V Semiconductor Nanostructures
磁掺杂 III-V 族半导体纳米结构
- 批准号:
NE/T014792/1 - 财政年份:2020
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
- 批准号:
EP/T01914X/1 - 财政年份:2020
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Platform for Nanoscale Advanced Materials Engineering (P-NAME)
纳米先进材料工程平台 (P-NAME)
- 批准号:
EP/R025576/1 - 财政年份:2018
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:
EP/N020057/2 - 财政年份:2017
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/2 - 财政年份:2017
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Quantum technology capital: Multi-species single-ion implantation
量子技术资本:多物种单离子注入
- 批准号:
EP/N015215/1 - 财政年份:2016
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/1 - 财政年份:2015
- 资助金额:
$ 48.56万 - 项目类别:
Research Grant
相似国自然基金
非谐晶格材料中准二维大极化子激发态动力学研究方法发展和应用
- 批准号:
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:
半直线上具有非局部边界条件的发展型微分变分不等式的理论、算法及应用研究
- 批准号:12161028
- 批准年份:2021
- 资助金额:32 万元
- 项目类别:地区科学基金项目
发展和应用基于2D NMR的细胞代谢组学方法研究ROR1在非小细胞肺癌中的功能机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
非磷酸化代谢途径的发展、优化及其在生物合成中的应用
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于非共价键次级作用协同活化策略发展新型手性双膦配体及其应用研究
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Development of an extremely high speed unconfined compression apparatus and its application to peat
极高速无侧限压缩装置的研制及其在泥炭中的应用
- 批准号:
23K04035 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive and non-invasive prenatal screening of coding variation
全面、无创的编码变异产前筛查
- 批准号:
10678005 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Vector engineering for non-viral delivery of large genomic DNA to the RPE
用于将大基因组 DNA 非病毒传递至 RPE 的载体工程
- 批准号:
10667049 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别:
Heat therapy for the treatment of SCI-induced changes in nociceptor and mitochondrial function
热疗法治疗 SCI 引起的伤害感受器和线粒体功能变化
- 批准号:
10641385 - 财政年份:2023
- 资助金额:
$ 48.56万 - 项目类别: