Functional Nitride Nanocrystals for Quantum-Enhanced Technologies

用于量子增强技术的功能氮化物纳米晶体

基本信息

  • 批准号:
    EP/M015513/1
  • 负责人:
  • 金额:
    $ 47.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

This project will transform the current research field of advanced nanoscale materials through developing a new generation of doped nitride nanomaterials in which their quantum properties can be controlled. These materials will allow access to quantum properties at room-temperature enabling and supporting the development of quantum technologies (QTs) in the long term. They also have a number of immediate applications (generating quantum-enhanced technologies) including in ICT devices and as biomarkers.In the 20th century the development of silicon-based electronics revolutionised the world, becoming the most pervasive technology behind modern-day life. In the 21st century the next revolutionary advance is predicted to come from the development of QTs. The most well-known quantum property is the dual particle-wavelike nature of electrons. This property is actually problematic in current technologies (e.g. transistors) which rely on electrons behaving as particles thus allowing them to be controlled using barriers. As these technologies are reduced in size these barriers start to fail as the wavelike properties of electrons come into play.In QTs the wavelike nature of particles will form the essential basis on which functionality is built, rather than being a problem to be overcome. Additional quantum effects such as 'spin' and the use of quantum mechanisms that allow the interaction between particles (exchange fields) provide further key properties and phenomena which these technologies will exploit. To realise this, materials must be developed which allow these properties to be enhanced and controlled. This can be achieved by reducing the size of a material down to a length scale comparable to the wavelength of the electron within it. In practice this requires the use of nanomaterials. The most successful materials developed to date are semiconductor nanocrystals (NCs) whose properties may be controlled through simple changes to size and shape.Furthermore early work has shown that by introducing magnetic dopants into these NCs, rich quantum behaviour can be observed including the ability to manipulate spin and magnetic properties using light. These are the only material systems to have shown such behaviour at room temperature, a significant requirement of any future QTs.The project will directly address the EPSRC Physical Science Grand Challenges of Nanoscale Design of Functional Materials and Quantum Physics for New QTs through advanced development of these and new NC materials. Using doping we will control the NC optical, electronic and magnetic properties and determine strategies for enhancing them based on the detailed characterisation and modelling we will undertake. Furthermore, we will address the issue of uptake of NCs by industry and those working in biological applications through exclusive study of nitride based materials. These systems, which have yet to be studied in any detail, offer an alternative to more the commonly studied systems which contain heavy metals such as Cd and Pb.Current understanding of the quantum behaviour exhibited in existing doped NC systems is incomplete, and the ability to predict and control properties remains limited. In our work we will therefore undertake a program of advanced characterisation ranging from fundamental studies of magnetic interactions in NC systems, using highly sensitive nanoSQUID devices, through to the incorporation and study of NCs within devices. Research into NCs within devices will provide the proof-of-principle required to guide and justify further developmental work that will form the basis of the future quantum-enhanced technologies.Bringing together this leading team of interdisciplinary researchers and industrial partners to address the key challenges that face physical scientists today, this coherent and focused programme offers a unique opportunity to not only advance the field but place the UK in the lead with regard to QTs.
该项目将通过开发新一代掺杂的硝酸盐纳米材料来改变当前的高级纳米级材料研究领域,其中可以控制其量子性能。这些材料将允许在室温下访问量子特性,从而使量子技术(QTS)长期发展。它们还具有许多直接应用(生成量子增强技术),包括在ICT设备和生物标志物中。在20世纪,总部位于硅电子产品的发展彻底改变了世界,成为现代生活背后最普遍的技术。在21世纪,预计下一个革命进步将来自QT的发展。最著名的量子特性是电子的双颗粒波性质。在当前技术(例如晶体管)中,该特性实际上是有问题的,这些技术依赖于行为粒子的电子,因此可以使用屏障来控制它们。随着这些技术的尺寸降低,这些障碍物开始失败,因为电子的小波特性开始起作用。在QTS中,粒子的波浪性质将构成建立功能的基本基础,而不是要克服的问题。其他量子效应,例如“自旋”以及允许颗粒之间相互作用(交换场)相互作用的量子机制的使用提供了进一步的关键特性和现象,这些技术将利用这​​些特性和现象。为了意识到这一点,必须开发材料,以增强和控制这些属性。这可以通过将材料的大小降低至长度比例与其中的电子波长相当,从而实现这一点。实际上,这需要使用纳米材料。迄今为止开发的最成功的材料是半导体纳米晶体(NCS),其性能可以通过简单的尺寸和形状进行控制。Furthermore早期工作表明,通过将磁性掺杂剂引入这些NCS,可以观察到丰富的量子行为,包括使用光操纵自旋和磁性的能力。这些是在室温下显示这种行为的唯一材料系统,这是任何未来QT的重要要求。该项目将直接解决EPSRC物理科学的纳米级功能材料设计和量子物理量子的巨大挑战,用于通过这些和新的NC材料的高级开发,用于新的QT。使用掺杂,我们将控制NC光学,电子和磁性特性,并根据我们将进行的详细表征和建模来确定增强它们的策略。此外,我们将通过行业对NCS的吸收以及通过氮化物基材料的独家研究来解决生物应用的问题。这些系统尚未进行任何详细研究,它为更多的经常研究的系统提供了一种替代方法,这些系统包含诸如CD和PB等重金属的系统。对现有掺杂的NC系统中表现出的量子行为的依然理解不完整,并且预测和控制属性的能力仍然有限。因此,在我们的工作中,我们将进行一项先进特征的程序,包括使用高度敏感的纳米Quid设备的NC系统中的磁相互作用的基本研究到设备内NCS的结合和研究。 Research into NCs within devices will provide the proof-of-principle required to guide and justify further developmental work that will form the basis of the future quantum-enhanced technologies.Bringing together this leading team of interdisciplinary researchers and industrial partners to address the key challenges that face physical scientists today, this coherent and focused programme offers a unique opportunity to not only advance the field but place the UK in the lead with regard to QTs.

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Carrier density tuning in CuS nanoparticles and thin films by Zn doping via ion exchange.
通过离子交换掺杂锌来调节 CuS 纳米粒子和薄膜中的载流子密度。
  • DOI:
    10.1039/d3nr00139c
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Shukla A
  • 通讯作者:
    Shukla A
Nanoscale LiZnN - Luminescent Half-Heusler Quantum Dots.
  • DOI:
    10.1021/acsaom.3c00065
  • 发表时间:
    2023-06-23
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carter-Searjeant S;Fairclough SM;Haigh SJ;Zou Y;Curry RJ;Taylor PN;Huang C;Fleck R;Machado P;Kirkland AI;Green MA
  • 通讯作者:
    Green MA
The Biosynthesis of Infrared-Emitting Quantum Dots in Allium Fistulosum.
  • DOI:
    10.1038/srep20480
  • 发表时间:
    2016-02-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Green M;Haigh SJ;Lewis EA;Sandiford L;Burkitt-Gray M;Fleck R;Vizcay-Barrena G;Jensen L;Mirzai H;Curry RJ;Dailey LA
  • 通讯作者:
    Dailey LA
Synthesis of IR-emitting HgTe quantum dots using an ionic liquid-based tellurium precursor.
  • DOI:
    10.1039/d1na00291k
  • 发表时间:
    2021-07-13
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
  • 通讯作者:
Lead sulphide nanocrystal photodetector technologies
  • DOI:
    10.1038/nphoton.2015.280
  • 发表时间:
    2016-02-01
  • 期刊:
  • 影响因子:
    35
  • 作者:
    Saran, Rinku;Curry, Richard J.
  • 通讯作者:
    Curry, Richard J.
共 7 条
  • 1
  • 2
前往

Richard Curry的其他基金

Supporting World-Class Labs at the University of Manchester (2022)
支持曼彻斯特大学世界一流的实验室(2022)
  • 批准号:
    EP/X035093/1
    EP/X035093/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Research Grant
    Research Grant
Future Laser Manufacturing of Nanostructured Metal Oxide Semiconductors for Functional Materials and Devices
用于功能材料和器件的纳米结构金属氧化物半导体的未来激光制造
  • 批准号:
    EP/V008188/1
    EP/V008188/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Research Grant
    Research Grant
Nanoscale Advanced Materials Engineering
纳米先进材料工程
  • 批准号:
    EP/V001914/1
    EP/V001914/1
  • 财政年份:
    2021
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Research Grant
    Research Grant
Magnetically-Doped III-V Semiconductor Nanostructures
磁掺杂 III-V 族半导体纳米结构
  • 批准号:
    NE/T014792/1
    NE/T014792/1
  • 财政年份:
    2020
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Research Grant
    Research Grant
Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
  • 批准号:
    EP/T01914X/1
    EP/T01914X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Research Grant
    Research Grant
Platform for Nanoscale Advanced Materials Engineering (P-NAME)
纳米先进材料工程平台 (P-NAME)
  • 批准号:
    EP/R025576/1
    EP/R025576/1
  • 财政年份:
    2018
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Research Grant
    Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
  • 批准号:
    EP/N020057/2
    EP/N020057/2
  • 财政年份:
    2017
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Research Grant
    Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
  • 批准号:
    EP/M015513/2
    EP/M015513/2
  • 财政年份:
    2017
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Research Grant
    Research Grant
Quantum technology capital: Multi-species single-ion implantation
量子技术资本:多物种单离子注入
  • 批准号:
    EP/N015215/1
    EP/N015215/1
  • 财政年份:
    2016
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Research Grant
    Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
  • 批准号:
    EP/N020057/1
    EP/N020057/1
  • 财政年份:
    2016
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Research Grant
    Research Grant

相似国自然基金

防“钛火”金属氮化物耐磨涂层阻燃机理研究
  • 批准号:
    52305204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
等离子体表面温场对金属氮化物催化剂结构的调控机制研究
  • 批准号:
    12304020
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
过渡金属氮化物表面多活性中心耦合催化N−C偶联固氮的理论研究
  • 批准号:
    22373113
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于类水滑石前体的过渡金属氮化物催化剂的结构调控与氨分解性能研究
  • 批准号:
    22378070
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于大电流密度电解海水制氢的过渡金属氮化物三维核壳结构设计及界面调控
  • 批准号:
    22309168
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Semiconductor Nitride Nanocrystals for Quantum Technologies
用于量子技术的半导体氮化物纳米晶体
  • 批准号:
    580930-2022
    580930-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Alliance Grants
    Alliance Grants
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
  • 批准号:
    EP/M015513/2
    EP/M015513/2
  • 财政年份:
    2017
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Research Grant
    Research Grant
Functional Nitride Nanocrystals for Quantum Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
  • 批准号:
    EP/M015653/1
    EP/M015653/1
  • 财政年份:
    2015
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Research Grant
    Research Grant
Nitride-Passivated Silicon Nanocrystals in Light Emitting Devices
发光器件中的氮化物钝化硅纳米晶体
  • 批准号:
    361756-2008
    361756-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Postgraduate Scholarships - Master's
    Postgraduate Scholarships - Master's
Nitride-Passivated Silicon Nanocrystals in Light Emitting Devices
发光器件中的氮化物钝化硅纳米晶体
  • 批准号:
    361756-2008
    361756-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 47.55万
    $ 47.55万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
    Alexander Graham Bell Canada Graduate Scholarships - Master's