Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
基本信息
- 批准号:EP/N020057/2
- 负责人:
- 金额:$ 43.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the 20th century, the development of silicon-based electronics revolutionised the world, becoming the most pervasive technology behind modern-day life. In the 21st century, it is envisaged that technology will move to the use of light (photons) together with, or in place of, electrons, providing a dramatic increase in the speed and quantity of information processing whilst also reducing the energy required to do so. Making this transition to an all optical 'photonic' technology has proved to be a complex task, as the material of choice for electronics, silicon, is limited in its ability to control light. In the search for alternative materials, a class of glasses called amorphous chalcogenides (a-ChGs) have shown remarkable promise, to the point where they have been referred to as the 'optical equivalent of silicon'. Chalcogenides are materials which contain one or more of the elements sulfur, selenium or tellurium as a major constituent. These materials are already widely used in applications such as photovoltaics, memory (e.g. DVDs), advanced optical devices (e.g. lasers), and in some thermoelectric generation systems. It is accepted that the move to all-optical technologies will require an intermediate stage where information processing is undertaken using a hybrid 'optoelectronic' system. This provides a strong and compelling argument for the development of a-ChGs, as they can be deposited on Si to form a hybrid approach en-route to their use as an all-optical platform.Whilst the optical properties of a-ChGs may be controlled and modified it has proved to be extremely difficult to modify their electronic properties during the material preparation, which has typically involved melting at high temperatures. Any impurities that are added to these materials in order to change the electronic behaviour are ineffective under these conditions due to the ability of the ChG material to reorder itself when melted, and so negate the desired doping effect. We have successfully pioneered a method to modify their properties by introducing dopants into a-ChGs below their melting temperature, thus not allowing the material to reorder, using ion-implantation. This method of doping allows precise control of the type of impurity introduced and is widely used in silicon technologies. As a result of this work, we have demonstrated the ability to reverse the majority charge carrier type from holes (p-type) to electrons (n-type) in a spatially localised way. This step-changing achievement enabled us to demonstrate the fabrication of optically active pn-junctions in a-ChGs, which will act as the enabling catalyst for the development of future photonic technologies.In this project we will seek to develop a full understanding of the process of carrier-type reversal on the atomic scale, and use this information to optimize it, and the materials that are to be modified, so as to add further functionality. We will also develop the required advanced engineering methods which relate to the control and activation of dopants introduced using ion-implantation into a-ChGs. Together, these will enable the demonstration of a series of optoelectronic devices demonstrating the key functionalities required to build an integrated optoelectronic technology. This programme will consolidate the position of the UK as the world leader in the field of non-equilibrium doping of chalcogenides. We will, in this way, champion these materials in the world's transition to beyond CMOS technology and therefore directly contribute to the continuing growth of the knowledge economy. We will train the next generation of scientists and engineers in state-of-the-art techniques to ensure that the UK maintains the expertise base required for this purpose, aim to ensure that the impact of this work is maximised and accelerated where possible, and communicate the results widely, including to all stakeholders in this research.
在20世纪,基于硅电子产品的发展彻底改变了世界,成为现代生活背后最普遍的技术。在21世纪,可以预见,技术将与电子(或代替电子)一起使用,从而提供了信息处理的速度和数量,同时还可以减少这样做所需的能量。事实证明,将这种向所有光学“光子”技术过渡已被证明是一项复杂的任务,因为电子产品的首选材料(硅)的控制能力受到限制。在寻找替代材料时,一类称为无定形辣椒剂(A-CHG)的眼镜表现出了很大的希望,以至于它们被称为“相当于硅的光学等效物”。葡萄干剂是含有一个或多个元素硫,硒或柜子的材料,作为主要组成部分。这些材料已经广泛用于光伏,内存(例如DVD),高级光学设备(例如激光器)和某些热电学生成系统等应用中。可以接受的是,向全光学技术的转移将需要使用混合“光电子”系统进行信息处理的中间阶段。这为A-CHG的开发提供了强烈而令人信服的论点,因为它们可以存放在SI上,以形成一种混合方法,可以用作全光型平台。当A-CHG的光学特性受到控制和修改时,事实证明,它被证明是极其难以在材料制备过程中进行高度融合的材料,这是非常困难的。在这些条件下,由于CHG材料在融化时重新排序的能力,因此在这些条件下添加到这些材料中的任何杂质都是无效的,因此否定了所需的掺杂效果。我们已经成功开创了一种方法来修改其性质,通过将掺杂剂引入低于其熔化温度的A-CHG,因此不允许使用离子植入物重新订购材料。这种掺杂方法允许精确控制引入的杂质的类型,并广泛用于硅技术。由于这项工作,我们已经证明了以空间局部的方式将大多数电荷载体类型从孔(p型)转换为电子(N型)的能力。这一逐步改变的成就使我们能够证明在A-CHG中的光学主动PN缝制的制造,这将充当开发未来光子技术的促进催化剂。在此项目中,我们将寻求对载体型在原子量表上的逆转的过程充分理解,并将其纳入原子量表,并构成材料,以便将其构成材料,以便将其及其及其及其及其进行构建,以便对材料进行构建。我们还将开发所需的高级工程方法,该方法与使用离子植入术引入的掺杂剂的控制和激活有关。这些将共同证明一系列光电设备,展示构建集成的光电技术所需的关键功能。该计划将巩固英国在非平衡掺杂葡萄球植物领域的领导地位。这样,我们将在世界超越CMOS技术的过渡中拥护这些材料,因此直接有助于知识经济的持续增长。我们将培训下一代科学家和工程师的最先进技术,以确保英国维持为此目的所需的专业知识基础,以确保在可能的情况下最大程度地提高和加速这项工作的影响,并广泛传达结果,包括与本研究中所有利益相关者。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Photo-Seebeck study of amorphous germanium-tellurium-oxide films
非晶氧化锗碲薄膜的光塞贝克研究
- DOI:10.1007/s10854-020-04702-y
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Gholizadeh A
- 通讯作者:Gholizadeh A
Frequency- and time-resolved photocurrents in vacuum-deposited stabilised a-Se films: the role of valence alternation defects
真空沉积稳定 a-Se 薄膜中的频率和时间分辨光电流:价态交替缺陷的作用
- DOI:10.1007/s10854-020-04111-1
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Jacobs J
- 通讯作者:Jacobs J
X-ray induced Sm-ion valence conversion in Sm-ion implanted fluoroaluminate glasses towards high-dose radiation measurement
- DOI:10.1007/s10854-019-01212-4
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:Farley Chicilo;C. Koughia;R. Curry;R. Gwilliam;Ruben Ahumada-Lazo;A. Edgar;D. Binks;D. Chapman
- 通讯作者:Farley Chicilo;C. Koughia;R. Curry;R. Gwilliam;Ruben Ahumada-Lazo;A. Edgar;D. Binks;D. Chapman
Instrumentation for high-dose, high-resolution dosimetry for microbeam radiation therapy using samarium-doped fluoroaluminate and fluorophosphate glass plates
- DOI:10.1088/1361-6501/ab404e
- 发表时间:2020-01-01
- 期刊:
- 影响因子:2.4
- 作者:Chicilo, F.;Okada, G.;Kasap, S.
- 通讯作者:Kasap, S.
Optical and electrical properties of alkaline-doped and As-alloyed amorphous selenium films
- DOI:10.1007/s10854-019-01386-x
- 发表时间:2019-09-01
- 期刊:
- 影响因子:2.8
- 作者:Gunes, O.;Koughia, C.;Kasap, S. O.
- 通讯作者:Kasap, S. O.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Curry其他文献
Richard Curry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Curry', 18)}}的其他基金
Supporting World-Class Labs at the University of Manchester (2022)
支持曼彻斯特大学世界一流的实验室(2022)
- 批准号:
EP/X035093/1 - 财政年份:2023
- 资助金额:
$ 43.02万 - 项目类别:
Research Grant
Future Laser Manufacturing of Nanostructured Metal Oxide Semiconductors for Functional Materials and Devices
用于功能材料和器件的纳米结构金属氧化物半导体的未来激光制造
- 批准号:
EP/V008188/1 - 财政年份:2021
- 资助金额:
$ 43.02万 - 项目类别:
Research Grant
Nanoscale Advanced Materials Engineering
纳米先进材料工程
- 批准号:
EP/V001914/1 - 财政年份:2021
- 资助金额:
$ 43.02万 - 项目类别:
Research Grant
Magnetically-Doped III-V Semiconductor Nanostructures
磁掺杂 III-V 族半导体纳米结构
- 批准号:
NE/T014792/1 - 财政年份:2020
- 资助金额:
$ 43.02万 - 项目类别:
Research Grant
Cryogenic Ultrafast Scattering-type Terahertz-probe Optical-pump Microscopy (CUSTOM)
低温超快散射型太赫兹探针光泵显微镜(定制)
- 批准号:
EP/T01914X/1 - 财政年份:2020
- 资助金额:
$ 43.02万 - 项目类别:
Research Grant
Platform for Nanoscale Advanced Materials Engineering (P-NAME)
纳米先进材料工程平台 (P-NAME)
- 批准号:
EP/R025576/1 - 财政年份:2018
- 资助金额:
$ 43.02万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/2 - 财政年份:2017
- 资助金额:
$ 43.02万 - 项目类别:
Research Grant
Quantum technology capital: Multi-species single-ion implantation
量子技术资本:多物种单离子注入
- 批准号:
EP/N015215/1 - 财政年份:2016
- 资助金额:
$ 43.02万 - 项目类别:
Research Grant
Development and Application of Non-Equilibrium Doping in Amorphous Chalcogenides
非晶硫族化物非平衡掺杂的研究进展及应用
- 批准号:
EP/N020057/1 - 财政年份:2016
- 资助金额:
$ 43.02万 - 项目类别:
Research Grant
Functional Nitride Nanocrystals for Quantum-Enhanced Technologies
用于量子增强技术的功能氮化物纳米晶体
- 批准号:
EP/M015513/1 - 财政年份:2015
- 资助金额:
$ 43.02万 - 项目类别:
Research Grant
相似国自然基金
多维行为偏好的非参数前沿评估建模及其在高技术产业绿色发展应用
- 批准号:72301145
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
非谐晶格材料中准二维大极化子激发态动力学研究方法发展和应用
- 批准号:
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:
发展和应用基于2D NMR的细胞代谢组学方法研究ROR1在非小细胞肺癌中的功能机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
发展和应用基于2D NMR的细胞代谢组学方法研究ROR1在非小细胞肺癌中的功能机制
- 批准号:32171440
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
半直线上具有非局部边界条件的发展型微分变分不等式的理论、算法及应用研究
- 批准号:12161028
- 批准年份:2021
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Developing a robust native extracellular matrix to improve islet function with attenuated immunogenicity for transplantation
开发强大的天然细胞外基质,以改善胰岛功能,并减弱移植的免疫原性
- 批准号:
10596047 - 财政年份:2023
- 资助金额:
$ 43.02万 - 项目类别:
Development of an extremely high speed unconfined compression apparatus and its application to peat
极高速无侧限压缩装置的研制及其在泥炭中的应用
- 批准号:
23K04035 - 财政年份:2023
- 资助金额:
$ 43.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comprehensive and non-invasive prenatal screening of coding variation
全面、无创的编码变异产前筛查
- 批准号:
10678005 - 财政年份:2023
- 资助金额:
$ 43.02万 - 项目类别:
Vector engineering for non-viral delivery of large genomic DNA to the RPE
用于将大基因组 DNA 非病毒传递至 RPE 的载体工程
- 批准号:
10667049 - 财政年份:2023
- 资助金额:
$ 43.02万 - 项目类别:
Heat therapy for the treatment of SCI-induced changes in nociceptor and mitochondrial function
热疗法治疗 SCI 引起的伤害感受器和线粒体功能变化
- 批准号:
10641385 - 财政年份:2023
- 资助金额:
$ 43.02万 - 项目类别: