Collaborative multi-site project to speed the identification and management of rare genetic immune diseases
加速罕见遗传免疫疾病的识别和管理的多站点合作项目
基本信息
- 批准号:10549340
- 负责人:
- 金额:$ 79.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-25 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAccelerationAgeAlgorithmsAntibodiesAutoimmunityAwarenessBronchiectasisCaliforniaCaringCase Report FormCategoriesClassificationClinicClinicalClinical ImmunologyCodeCommon Variable ImmunodeficiencyComputer ModelsComputerized Medical RecordDataData CollectionData SetDiagnosisDiagnosticDiseaseDropsElectronic Health RecordEthnic OriginEvaluationFibrosisFutureGenderGenesGeneticGenetic DiseasesGenomicsGoalsHealthHealth Care CostsHealth systemHealthcare SystemsHospitalsImmuneImmune System DiseasesImmunogeneticsImmunologic Deficiency SyndromesImmunological DiagnosisImmunologicsImmunologyIndividualInfectionInflammationKnowledgeLaboratoriesLaboratory ResearchLinkLongevityLos AngelesLungMachine LearningManualsMedicalMedical centerMedicineMendelian disorderModelingMorbidity - disease rateNatural ImmunityPatientsPhenotypePredispositionPrevalenceProcessPsychosocial Assessment and CarePublishingQuality of lifeRaceRare DiseasesResearchRiskSan FranciscoScheduleScienceScientistSiteSpeedState-of-the-Art ReviewsStructureSubjects SelectionsSystemTestingThinkingTimeTrainingUniversitiesVisitWorkadaptive immunityalgorithm developmentclinical data repositoryclinical data warehousecollaborative approachcongenital immunodeficiencycostdata sharingdata standardsdata warehousedisease diagnosisdisease phenotypefallsgenetic disorder diagnosisgenome sequencinggenomic datahealth dataimprovedinnovationmedical specialtiesmortalityneglectnext generationpeerrisk predictionscreeningtranscriptome sequencingvideo chatwhole genome
项目摘要
Summary
The subject of this proposal is a new, collaborative approach to improve the diagnosis of primary
immunodeficiency diseases (PIDs). These patients have individually rare, monogenic disorders leading to
severe infections, autoimmunity, and inflammation. The prevalence of PIDs is ~1:10,000 and approximately
half have antibody deficiencies as their main immunological phenotype. Most doctors are unaware of these
diseases and many patients go years without a diagnosis, costing the system tens of thousands of dollars per
patient yearly and unnecessarily increasing morbidity and mortality. There is a tremendous, untapped
opportunity to advance the diagnosis of patients with PIDs.
We propose to utilize new machine-learning approaches to algorithmically identify patients with PIDs
from their electronic health records (EHR). To accomplish our goals, we have built a coalition of computational
genomics groups at UCLA, UCSF, and Vanderbilt (Computational team), and clinical immunology groups at
the five University of California medical centers (Los Angeles, San Francisco, Irvine, San Diego, and Davis)
(Immunology team). We propose to: Identify patients with rare immune diseases by phenotype risk
scoring (Aim 1). We will speed the identification of patients with rare immune diseases by surveilling the
EHR using a phenotype risk scoring approach, building upon recently published work in Science. We will
apply this approach to the UCLA, UCSF, and Vanderbilt clinical data repositories to identify potential cases.
We will improve risk scoring by considering gender, age, and race/ethnicity. We will classify patients by
whether they have an infection phenotype or immune dysregulation phenotype. Subsequently, we will expand
to the larger, UC Health-wide Data Warehouse (UCHWDW), entailing 15+ million patients across all UC
medical centers. We will then Identify the genetic immune diseases for these newly found subjects
(Aim 2). We will follow the state-of-the-art approach employed by the UCLA and Vanderbilt Undiagnosed
Disease Network (UDN) sites. We will start by sequencing all the known antibody deficiency patients across the
Immunology team sites while collaboratively pre-reviewing identified cases from Aim 1 on monthly video-calls.
For selected subjects, we will perform whole genome and RNA sequencing. Clinical and research laboratory
testing will bring closure to the diagnostic odyssey for these subjects.
The overall impact of this work accelerates the diagnosis and cure of PIDs. This project will also serve as a
demonstration of how immunology sites can work together sharing electronic medical records and genomic
data to advance care.
概括
该提案的主题是一种改善主要诊断的新型协作方法
免疫缺陷疾病(PID)。这些患者具有单独罕见的单基因疾病,导致
严重的感染,自身免疫性和炎症。 PID的患病率为〜1:10,000,大约为
一半的抗体缺陷是其主要免疫表型。大多数医生都不知道这些
疾病和许多患者几年没有诊断,使系统成千上万美元
患者每年,不必要地增加发病率和死亡率。有一个巨大的,未开发的
有机会推进PID患者的诊断。
我们建议利用新的机器学习方法来识别PID的患者
从他们的电子健康记录(EHR)中。为了实现我们的目标,我们建立了一个计算联盟
UCLA,UCSF和Vanderbilt(计算小组)的基因组学组和临床免疫学组
加利福尼亚大学五个医学中心(洛杉矶,旧金山,欧文,圣地亚哥和戴维斯)
(免疫学团队)。我们建议:通过表型风险鉴定患有罕见免疫疾病的患者
得分(目标1)。我们将通过监视罕见免疫疾病的患者加快鉴定
EHR使用表型风险评分方法,基于最近发表的科学工作。我们将
将此方法应用于UCLA,UCSF和Vanderbilt临床数据存储库,以识别潜在病例。
我们将通过考虑性别,年龄和种族/种族来提高风险评分。我们将通过
它们是否具有感染表型或免疫失调表型。随后,我们将扩展
到较大的UC健康范围内的数据仓库(UCHWDW),所有UC需要15百万患者
医疗中心。然后,我们将确定这些新发现的受试者的遗传免疫疾病
(目标2)。我们将遵循加州大学洛杉矶分校和范德比尔特采用的最先进方法
疾病网络(UDN)地点。我们将首先测序所有已知的抗体缺乏症患者
免疫学团队站点在协作预审的同时,在每月视频通话中确定了AIM 1的案例。
对于选定的受试者,我们将执行整个基因组和RNA测序。临床和研究实验室
测试将使这些受试者的诊断奥德赛结束。
这项工作的总体影响加速了PID的诊断和治疗。该项目也将作为一个
证明免疫学部位如何共享电子病历和基因组
数据以提高护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MANISH J BUTTE其他文献
MANISH J BUTTE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MANISH J BUTTE', 18)}}的其他基金
Adaptive Immune Dysregulation in Disseminated Coccidioidomycosis
播散性球孢子菌病的适应性免疫失调
- 批准号:
10554381 - 财政年份:2022
- 资助金额:
$ 79.16万 - 项目类别:
Immunoengineering cellobiose as a fuel source for T cells
免疫工程纤维二糖作为 T 细胞的燃料来源
- 批准号:
10661076 - 财政年份:2022
- 资助金额:
$ 79.16万 - 项目类别:
Host Immunogenetics and Fungal Virulence Mechanisms in Coccidioidomycosis
球孢子菌病的宿主免疫遗传学和真菌毒力机制
- 批准号:
10356724 - 财政年份:2022
- 资助金额:
$ 79.16万 - 项目类别:
Host Immunogenetics and Fungal Virulence Mechanisms in Coccidioidomycosis
球孢子菌病的宿主免疫遗传学和真菌毒力机制
- 批准号:
10554360 - 财政年份:2022
- 资助金额:
$ 79.16万 - 项目类别:
Adaptive Immune Dysregulation in Disseminated Coccidioidomycosis
播散性球孢子菌病的适应性免疫失调
- 批准号:
10356729 - 财政年份:2022
- 资助金额:
$ 79.16万 - 项目类别:
Immunoengineering cellobiose as a fuel source for T cells
免疫工程纤维二糖作为 T 细胞的燃料来源
- 批准号:
10539922 - 财政年份:2022
- 资助金额:
$ 79.16万 - 项目类别:
Collaborative multi-site project to speed the identification and management of rare genetic immune diseases
加速罕见遗传免疫疾病的识别和管理的多站点合作项目
- 批准号:
10359836 - 财政年份:2021
- 资助金额:
$ 79.16万 - 项目类别:
T-cell Dysfunction as the basis of Disseminated Coccidioidomycosis
T 细胞功能障碍是播散性球孢子菌病的基础
- 批准号:
10338193 - 财政年份:2021
- 资助金额:
$ 79.16万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Conventional 200 keV Transmission Electron Microscope
传统 200 keV 透射电子显微镜
- 批准号:
10632798 - 财政年份:2023
- 资助金额:
$ 79.16万 - 项目类别:
Inspiratory Muscle Training to Improve Total Joint Arthroplasty Outcomes
吸气肌训练可改善全关节置换术的效果
- 批准号:
10725952 - 财政年份:2023
- 资助金额:
$ 79.16万 - 项目类别:
Mechanisms of Photoreceptor Contribution to Retinal Inflammation in Diabetic Retinopathy
光感受器对糖尿病视网膜病变视网膜炎症的作用机制
- 批准号:
10613428 - 财政年份:2021
- 资助金额:
$ 79.16万 - 项目类别:
Developing Novel Intervention Approaches to Mitigate Cardiovascular Risk among Young African-American Women
开发新的干预方法来降低年轻非洲裔美国女性的心血管风险
- 批准号:
10672237 - 财政年份:2021
- 资助金额:
$ 79.16万 - 项目类别: