Collaborative multi-site project to speed the identification and management of rare genetic immune diseases
加速罕见遗传免疫疾病的识别和管理的多站点合作项目
基本信息
- 批准号:10359836
- 负责人:
- 金额:$ 79.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-25 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAgeAlgorithmsAntibodiesAutoimmunityAwarenessBronchiectasisCaliforniaCaringCase Report FormClinicClinicalClinical ImmunologyClinical ResearchCodeCommon Variable ImmunodeficiencyComputer ModelsComputerized Medical RecordDataData CollectionData SetDiagnosisDiagnosticDiseaseDropsElectronic Health RecordEthnic OriginEvaluationFutureGenderGenesGeneticGenetic DiseasesGenomicsGoalsHealthHealth Care CostsHealth systemHealthcare SystemsHospitalsImmuneImmune System DiseasesImmunogeneticsImmunologic Deficiency SyndromesImmunological DiagnosisImmunologicsImmunologyIndividualInfectionInflammationKnowledgeLaboratoriesLaboratory ResearchLinkLongevityLos AngelesLungMachine LearningManualsMedicalMedical centerMedicineMendelian disorderModelingMorbidity - disease rateNatural ImmunityPatientsPhenotypePredispositionPrevalenceProcessPublishingQuality of lifeRaceRare DiseasesRiskSan FranciscoScheduleScienceScientistSiteSpeedStructureSystemTestingThinkingTimeTrainingUniversitiesVisitWorkadaptive immunityalgorithm developmentbaseclinical data repositoryclinical data warehousecollaborative approachcongenital immunodeficiencycostdata standardsdata warehousedisease diagnosisdisease phenotypefallsgenetic disorder diagnosisgenome sequencinggenomic datahealth dataimprovedinnovationmedical specialtiesmortalityneglectnext generationpeerpsychosocialrisk predictionscreeningtranscriptome sequencingvideo chatwhole genome
项目摘要
Summary
The subject of this proposal is a new, collaborative approach to improve the diagnosis of primary
immunodeficiency diseases (PIDs). These patients have individually rare, monogenic disorders leading to
severe infections, autoimmunity, and inflammation. The prevalence of PIDs is ~1:10,000 and approximately
half have antibody deficiencies as their main immunological phenotype. Most doctors are unaware of these
diseases and many patients go years without a diagnosis, costing the system tens of thousands of dollars per
patient yearly and unnecessarily increasing morbidity and mortality. There is a tremendous, untapped
opportunity to advance the diagnosis of patients with PIDs.
We propose to utilize new machine-learning approaches to algorithmically identify patients with PIDs
from their electronic health records (EHR). To accomplish our goals, we have built a coalition of computational
genomics groups at UCLA, UCSF, and Vanderbilt (Computational team), and clinical immunology groups at
the five University of California medical centers (Los Angeles, San Francisco, Irvine, San Diego, and Davis)
(Immunology team). We propose to: Identify patients with rare immune diseases by phenotype risk
scoring (Aim 1). We will speed the identification of patients with rare immune diseases by surveilling the
EHR using a phenotype risk scoring approach, building upon recently published work in Science. We will
apply this approach to the UCLA, UCSF, and Vanderbilt clinical data repositories to identify potential cases.
We will improve risk scoring by considering gender, age, and race/ethnicity. We will classify patients by
whether they have an infection phenotype or immune dysregulation phenotype. Subsequently, we will expand
to the larger, UC Health-wide Data Warehouse (UCHWDW), entailing 15+ million patients across all UC
medical centers. We will then Identify the genetic immune diseases for these newly found subjects
(Aim 2). We will follow the state-of-the-art approach employed by the UCLA and Vanderbilt Undiagnosed
Disease Network (UDN) sites. We will start by sequencing all the known antibody deficiency patients across the
Immunology team sites while collaboratively pre-reviewing identified cases from Aim 1 on monthly video-calls.
For selected subjects, we will perform whole genome and RNA sequencing. Clinical and research laboratory
testing will bring closure to the diagnostic odyssey for these subjects.
The overall impact of this work accelerates the diagnosis and cure of PIDs. This project will also serve as a
demonstration of how immunology sites can work together sharing electronic medical records and genomic
data to advance care.
概括
该提案的主题是一种新的协作方法,以改善原发性癌症的诊断
免疫缺陷疾病(PID)。这些患者患有个别罕见的单基因疾病,导致
严重感染、自身免疫和炎症。 PID 的患病率约为 1:10,000,大约
一半的人以抗体缺陷为主要免疫表型。大多数医生不知道这些
疾病和许多患者多年都没有得到诊断,这给系统带来了数万美元的损失
患者的发病率和死亡率每年不必要地增加。有一个巨大的、尚未开发的
促进 PID 患者诊断的机会。
我们建议利用新的机器学习方法通过算法识别 PID 患者
来自他们的电子健康记录 (EHR)。为了实现我们的目标,我们建立了一个计算联盟
加州大学洛杉矶分校 (UCLA)、加州大学旧金山分校 (UCSF) 和范德比尔特大学 (计算团队) 的基因组学小组,以及以下大学的临床免疫学小组
加州大学的五个医学中心(洛杉矶、旧金山、欧文、圣地亚哥和戴维斯)
(免疫学团队)。我们建议: 通过表型风险识别患有罕见免疫疾病的患者
得分(目标 1)。我们将通过监测罕见免疫疾病患者,加快识别速度。
EHR 使用表型风险评分方法,以最近在《科学》杂志上发表的工作为基础。我们将
将这种方法应用于加州大学洛杉矶分校、加州大学旧金山分校和范德比尔特临床数据存储库来识别潜在病例。
我们将通过考虑性别、年龄和种族/民族来提高风险评分。我们将按照以下方式对患者进行分类:
他们是否具有感染表型或免疫失调表型。后续我们将拓展
到更大的 UC Health-wide 数据仓库 (UCHWDW),涵盖所有 UC 的 15+ 百万患者
医疗中心。然后我们将鉴定这些新发现的受试者的遗传免疫疾病
(目标 2)。我们将遵循加州大学洛杉矶分校和范德堡大学未确诊所采用的最先进的方法
疾病网络 (UDN) 站点。我们将首先对整个地区所有已知的抗体缺乏症患者进行测序
免疫学团队在每月视频通话中协作预审 Aim 1 中发现的病例。
对于选定的受试者,我们将进行全基因组和 RNA 测序。临床和研究实验室
测试将为这些受试者的诊断之旅画上句号。
这项工作的总体影响加速了 PID 的诊断和治疗。该项目也将作为
演示免疫学站点如何协同工作共享电子病历和基因组
数据以促进护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MANISH J BUTTE其他文献
MANISH J BUTTE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MANISH J BUTTE', 18)}}的其他基金
Adaptive Immune Dysregulation in Disseminated Coccidioidomycosis
播散性球孢子菌病的适应性免疫失调
- 批准号:
10554381 - 财政年份:2022
- 资助金额:
$ 79.21万 - 项目类别:
Immunoengineering cellobiose as a fuel source for T cells
免疫工程纤维二糖作为 T 细胞的燃料来源
- 批准号:
10661076 - 财政年份:2022
- 资助金额:
$ 79.21万 - 项目类别:
Host Immunogenetics and Fungal Virulence Mechanisms in Coccidioidomycosis
球孢子菌病的宿主免疫遗传学和真菌毒力机制
- 批准号:
10356724 - 财政年份:2022
- 资助金额:
$ 79.21万 - 项目类别:
Host Immunogenetics and Fungal Virulence Mechanisms in Coccidioidomycosis
球孢子菌病的宿主免疫遗传学和真菌毒力机制
- 批准号:
10554360 - 财政年份:2022
- 资助金额:
$ 79.21万 - 项目类别:
Adaptive Immune Dysregulation in Disseminated Coccidioidomycosis
播散性球孢子菌病的适应性免疫失调
- 批准号:
10356729 - 财政年份:2022
- 资助金额:
$ 79.21万 - 项目类别:
Immunoengineering cellobiose as a fuel source for T cells
免疫工程纤维二糖作为 T 细胞的燃料来源
- 批准号:
10539922 - 财政年份:2022
- 资助金额:
$ 79.21万 - 项目类别:
Collaborative multi-site project to speed the identification and management of rare genetic immune diseases
加速罕见遗传免疫疾病的识别和管理的多站点合作项目
- 批准号:
10549340 - 财政年份:2021
- 资助金额:
$ 79.21万 - 项目类别:
T-cell Dysfunction as the basis of Disseminated Coccidioidomycosis
T 细胞功能障碍是播散性球孢子菌病的基础
- 批准号:
10338193 - 财政年份:2021
- 资助金额:
$ 79.21万 - 项目类别:
相似国自然基金
面向年龄相关性黄斑变性诊断的迁移学习算法研究
- 批准号:62371328
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于信息年龄的自组网分布式及时信息调度算法研究
- 批准号:62102232
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
异质动态网络上年龄结构传染病模型及算法研究
- 批准号:11701348
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
视网膜年龄相关性黄斑病变OCT图像的三维分割算法研究
- 批准号:61401294
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Automatic, Opportunistic Surveillance of Hip Bone Fragility in X-ray Images
X 射线图像中髋骨脆性的自动、机会性监视
- 批准号:
10697573 - 财政年份:2023
- 资助金额:
$ 79.21万 - 项目类别:
Development of FAST-DOSE assay system for the rapid assessment of acute radiation exposure, individual radiosensitivity and injury in victims for a large-scale radiological incident
开发快速剂量测定系统,用于快速评估大规模放射事件受害者的急性辐射暴露、个体放射敏感性和损伤
- 批准号:
10784562 - 财政年份:2023
- 资助金额:
$ 79.21万 - 项目类别:
Developing an autism-specific mortality risk index using data from Medicare-enrolled autistic older adults
使用参加医疗保险的自闭症老年人的数据制定特定于自闭症的死亡风险指数
- 批准号:
10716884 - 财政年份:2023
- 资助金额:
$ 79.21万 - 项目类别:
Collaborative multi-site project to speed the identification and management of rare genetic immune diseases
加速罕见遗传免疫疾病的识别和管理的多站点合作项目
- 批准号:
10549340 - 财政年份:2021
- 资助金额:
$ 79.21万 - 项目类别:
Improving perioperative management to reduce postoperative acute kidney injury and long-term renal risk
改善围手术期管理以减少术后急性肾损伤和长期肾脏风险
- 批准号:
10475332 - 财政年份:2021
- 资助金额:
$ 79.21万 - 项目类别: