一般型超曲面の部分多様体の研究

一般超曲面的子流形研究

基本信息

  • 批准号:
    22K03232
  • 负责人:
  • 金额:
    $ 2.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

グリーン・グリフィス・ラング予想という長い間未解決の予想がある.一般型の非特異射影複素多様体Xに対し,その真のザリスキ閉集合Z(例外集合と呼ばれる)が存在して,複素平面からXへの非定値正則写像の像はZに含まれる,という主張がそれである.この予想はほとんど手つかずで,いまだ解決からほど遠いと思われているが,特殊な一般型多様体に対して,グリーン・グリフィス・ラング予想を検証する試みはいくつか行われている.今年度,本研究者は,グリーン・グリフィス・ラング予想の代数的類似に関する研究を行った.ここで代数的類似とは,例外集合Zの外に複素平面からの非定値像は存在しない,ことの代わりに,例外集合に含まれない部分多様体は一般型である,ことを示す問題となる.この代数的類似でも一般に考えるのは難しいが,射影空間内の一般な超曲面に対しては,アイン,ヴォアザン,クレメンス・ランらによる研究がある.これらの研究では例外集合も具体的に決定されている.たとえば,クレメンス・ランの扱った場合では,例外集合は超曲面内の直線の和集合である.本研究者は本年度,この研究に触発され,次の場合を考察した.Gを端連結単純複素リー群とし,Tを極大トーラス,BをTを含むボレル部分群とする.Bを含む極大な放物的部分群はGのディンキン図形の頂点と一対一に対応する.そこでPを長ルートに対応する極大放物的部分群とし,G/Pをピカール群の正の生成元の完全線形系で射影空間に埋め込む.この時G/Pと超曲面の交わりに対し,グリーン・グリフィス・ラング予想の代数的類似の研究を行い,クレメンス・ランの結果の一般化を得ることに成功した.
有一个期待已久的预测,称为绿色格里菲斯·朗的预测。 The argument is that for a general type of nonsingly projected complex manifold X, there is a true Zariski closed set Z (called exception sets), and Z contains the image of an atypical regular map from the complex plane to X. Although this prediction is almost untouched and is still far from being resolved, several attempts have been made to test the Green Griffith-Lang prediction for special general-type manifolds.今年,研究人员对绿色格里菲斯·朗(Green Griffith Lang)预测的代数相似性进行了一项研究。在这里,代数相似性是一个问题,这个问题并没有从异常z外面的复杂平面中拥有非典型图像,而是在异常集中未包含的子手机是一般类型。尽管这种代数类比很难一般考虑,但EIN,Voazan,Clemens Lann和其他人在投影空间内的一般性表层进行了研究。这些研究还特别确定了异常集。例如,在克莱门斯(Clemens)的情况下,异常集是超出表面内的直线联合。今年,研究人员受这项研究的启发考虑以下情况:让G为最终连接的简单复杂谎言组,T是最大的圆环,B是包含T的Borell亚组。包含B的最大抛物线亚组对应于G的最大范围的emb of Prom and Prom of Prom and Proup的范围。与皮基群的正源的完全线性系统。目前,我们对G/P和Hypersurfaces的相交的绿色Griffith Lang预测进行了代数类似的研究,并成功地获得了Clemens Lang结果的概括。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subvarieties of geometric genus zero of a very general hypersurface
非常一般的超曲面的几何亏格零的子变种
  • DOI:
    10.14231/ag-2023-002
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    D. Banerjee;南出真;谷川好男;Takeshi Abe
  • 通讯作者:
    Takeshi Abe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

阿部 健其他文献

書評 D. Huybrechts and M. Lehn: The Geometry of Moduli Spaces of Sheaves
书评 D. Huybrechts 和 M. Lehn:滑轮模空间的几何
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    阿部 健
  • 通讯作者:
    阿部 健
Projective normality of rank $2$ vector bundles on a generic curve
通用曲线上等级 $2$ 向量束的投影正态性
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    小島秀雄;高橋剛;Hideo Kojima;阿部 健;Hideo Kojima;阿部 健;阿部 健;阿部 健;阿部 健
  • 通讯作者:
    阿部 健
半空間上のストークス流の平滑化$L^[1]$評価と解の一意性について
关于半空间斯托克斯流的平滑$L^[1]$评估及其解的唯一性
Tits alternative in hyperkahler manifolds
hyperkahler 流形中的 Tits 替代方案
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Budur;Nero;Mustata;Mircea;齋藤 盛彦;Akihiro Munemasa;阿部 健;小木曽啓示
  • 通讯作者:
    小木曽啓示
Spherical designs and Euclidean designs,a survay
球形设计和欧几里得设计,调查
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Budur;Nero;Mustata;Mircea;齋藤 盛彦;Akihiro Munemasa;阿部 健;小木曽啓示;Eiichi Bannai
  • 通讯作者:
    Eiichi Bannai

阿部 健的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('阿部 健', 18)}}的其他基金

双極渦を焦点とする非圧縮理想流の平衡状態と安定性の解明
阐明以双极涡为中心的不可压缩理想流的平衡状态和稳定性
  • 批准号:
    24K06800
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis on orbital stability of vortex rings
涡环轨道稳定性分析
  • 批准号:
    20K14347
  • 财政年份:
    2020
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ナヴィエ・ストークス方程式と自由境界値問題の解析
纳维-斯托克斯方程和自由边值问题的分析
  • 批准号:
    14J02251
  • 财政年份:
    2014
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
有界関数の空間におけるナヴィエ・ストークス方程式の解析
有界函数空间中纳维-斯托克斯方程的分析
  • 批准号:
    12J08019
  • 财政年份:
    2012
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
代数的ベクトル束のモジュライの研究
代数向量丛模的研究
  • 批准号:
    17740013
  • 财政年份:
    2005
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
ベクトル束やそのモジュライを用いる手法による代数多様体の研究
使用向量丛及其模研究代数簇
  • 批准号:
    99J04685
  • 财政年份:
    1999
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
multhclipole のベクトル心電図学的研究
多极矢量心电图研究
  • 批准号:
    X45210------7115
  • 财政年份:
    1970
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

カッツ・ムーディ代数と部分多様体の無限次元幾何学
Katz-Moody 代数和子流形的无限维几何
  • 批准号:
    23KJ1793
  • 财政年份:
    2023
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
From elliptic operators to sub-elliptic operators
从椭圆算子到次椭圆算子
  • 批准号:
    20K03662
  • 财政年份:
    2020
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New development of analysis and geometry on convex cones
凸锥分析与几何新进展
  • 批准号:
    20K03657
  • 财政年份:
    2020
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynkin indices and totally geodesic submanifolds in Riemannian symmetric spaces
黎曼对称空间中的 Dynkin 指数和全测地线子流形
  • 批准号:
    20K14310
  • 财政年份:
    2020
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
幾何的手法による志村多様体および局所Langlands対応の研究における新展開
利用几何方法研究志村流形和局部朗兰兹对应的新进展
  • 批准号:
    19J21728
  • 财政年份:
    2019
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了