On ring-theoretical properties of blow-up rings over singular points in positive characteristic

正特性奇点上爆炸环的环理论性质

基本信息

  • 批准号:
    14540020
  • 负责人:
  • 金额:
    $ 1.73万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

It continued for the previous research, and we have studied Hilbert-Kunz multiplicity as an invariant of singular points in positive characteristic. On the other hand, for last two years, we have studied mainly the F-rationality of Rees algebras as one of ring-theoretical properties of blow-up algebras.The most important result in our research is to give a criterion for the F-rationality of Rees algebras with respect to m-primary ideals in Cohen-Macaulay local rings. The notion of F-rationality was defined by Fedder and Watanabe as an analogue (in positive characteristic) of that of rational singularity in characteristic zero. But there are certainly different aspects between them. For instance, Boutot's theorem, which asserts that any direct summand of a rational singularity is also a rational singularity, is one of important theorems, because this theorem ensures the Cohen-Macaulay property of invariant subrings of linearly reductive groups. However, as for F-rationality, the similar result does not hold in general. Actually, as an application of our result, we can provide many counterexamples for such this.Another contribution of our research is to find a generalization of tight closure, and to generalize the notion of test ideal in the theory of tight closures. In fact, we showed that the generalized test ideal is an analogue (in positive characteristic) of a multiplier ideal in collaboration with Hara Nobuo at Tohoku University. Furthermore, we showed that the F-rationality of Rees algebra of an ideal in a rational double point in dimension two gives a sufficient condition for the multiplier ideal of the ideal and the generalized test ideal with respect to the ideal coincides.We gave a presentation of our results as above at Symposium on Commutative ring theory.
它继续进行了先前的研究,我们研究了希尔伯特·昆兹(Hilbert-Kunz)的多重性,是积极特征中奇异点的不变性。另一方面,在过去的两年中,我们主要研究了REES代数的F理性是爆炸代数的环理论特性之一。我们的研究最重要的结果是为REES代数的F理性提供标准,以相对于Cohen-Macaulay本地RING的M-Primary Ideals的F理性。 Fedder和Watanabe将F理性的概念定义为特征零中理性概念的类似物(以积极的特征)。但是它们之间肯定有不同的方面。例如,Boutot的定理断言,任何有理概念性的直接求和也是一个理性的概念,这是重要的定理之一,因为该定理可确保线性还原群体不变子环的Cohen-Macaulay属性。但是,至于f理性,相似的结果一般不产生。实际上,作为我们结果的应用,我们可以为此提供许多反示例。我们的研究的另一个贡献是找到紧密封闭的概括,并在紧密封闭理论中概括了测试理想的概念。实际上,我们表明,在与Tohoku University的Hara Nobuo合作中,广义测试理想是乘数理想的类似物(以积极特征)。此外,我们表明,在二维二维中,理想双点的REES代数的F理性为理想的乘数和普遍测试的乘数提供了足够的条件,相对于理想的重合,我们给出了我们的结果的介绍,如通勤环理论上的上述成果。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Hashimoto: ""Geometric quotients are algebraic schemes" based on Fogarty's idea"J.Math.Kyoto Univ.. (in press).
M.Hashimoto:“基于福格蒂思想的“几何商是代数方案””J.Math.Kyoto Univ..(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Hara, K.-i.Watanabe, K.Yoshida: "F-rationality of Rees algebras"J.Algebra. 247. 153-190 (2002)
N.Hara、K.-i.Watanabe、K.Yoshida:“Rees 代数的 F 理性”J.代数。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.-i.Watanabe, K.Yoshida: "Minimal relative Hilbert-Kunz multiplicity"Illinois J. Math.. (in press).
K.-i.Watanabe、K.Yoshida:“最小相对 Hilbert-Kunz 多重性”Illinois J. Math..(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Hara, K.-i.Watanabe, K.Yoshida: "Rees algebras of F-regular type"J.Algebra. 247. 191-218 (2002)
N.Hara、K.-i.Watanabe、K.Yoshida:“F-正则类型的里斯代数”J.代数。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazufumi Eto, Ken-ichi Yoshida: "Notes on Hilbert-Kunz multiplicity of Rees algebras."Comm.Alg.. 31. 5943-5976 (2003)
Kazufumi Eto、Ken-ichi Yoshida:“Rees 代数的 Hilbert-Kunz 重数注释。”Comm.Alg.. 31. 5943-5976 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOSHIDA Ken-ichi其他文献

YOSHIDA Ken-ichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOSHIDA Ken-ichi', 18)}}的其他基金

Research on rational singularities and almost Gorenstein blow-up algebras
有理奇点和几乎Gorenstein爆炸代数的研究
  • 批准号:
    16K05110
  • 财政年份:
    2016
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on sudden cardiovascular death in animal model of sleep apnea syndrome
睡眠呼吸暂停综合征动物模型心血管猝死的研究
  • 批准号:
    23249038
  • 财政年份:
    2011
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Metabolism of inositol stereoisomers in a thermophile,Geobacillus kaustophilusHTA426
嗜热土芽孢杆菌 HTA426 中肌醇立体异构体的代谢
  • 批准号:
    22310130
  • 财政年份:
    2010
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research of ring-invariants associated to powers of ideals
与理想幂相关的环不变量的研究
  • 批准号:
    22540047
  • 财政年份:
    2010
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the molecular mechanism underlying sudden cardiac deaths due to toxic substanses, ischemia and emotional stress
有毒物质、缺血、情绪应激导致心源性猝死的分子机制研究
  • 批准号:
    20390193
  • 财政年份:
    2008
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research of multiplier ideals and tight closures from viewpoint of commutative algebra and computational algebra
从交换代数和计算代数的角度研究乘子理想和紧闭集
  • 批准号:
    19340005
  • 财政年份:
    2007
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on the contribution of oxidative stress to the pathogenesis of cardiovascular diseases associated with life-styles
氧化应激在生活方式相关心血管疾病发病机制中的作用研究
  • 批准号:
    18390204
  • 财政年份:
    2006
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study into the Dynamism and Fluctuational Factors of Foreign Exchange Rates
外汇汇率动态及波动因素研究
  • 批准号:
    15530225
  • 财政年份:
    2003
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on cell injury due to Carbon Monoxide and Nitric Oxide under ischemia or shock
缺血或休克时一氧化碳和一氧化氮所致细胞损伤的研究
  • 批准号:
    14370152
  • 财政年份:
    2002
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Identification of new fatty acids associated with pathogenesis of ischemia and various types of intoxication and its application to a new diagnostic method
与缺血和各种中毒发病机制相关的新脂肪酸的鉴定及其在新诊断方法中的应用
  • 批准号:
    12470107
  • 财政年份:
    2000
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似国自然基金

脊髓抑制性神经元中NR2F2调节神经病理性疼痛及其机制研究
  • 批准号:
    82171206
  • 批准年份:
    2021
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
脊髓抑制性神经元中NR2F2调节神经病理性疼痛及其机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Singurality Theory and Frobenius Morphism
奇点理论和弗罗贝尼乌斯态射
  • 批准号:
    17540043
  • 财政年份:
    2005
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rees環と随伴次数環のBuchsbaum性に関する研究
Rees环和伴随阶环的Buchsbaum性质研究
  • 批准号:
    12740027
  • 财政年份:
    2000
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
正標数の手法の特異点論と消滅定理への応用
正特征方法在奇点理论和消失定理中的应用
  • 批准号:
    11740028
  • 财政年份:
    1999
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
On ring-theoretical invariants of singular points in positive characteristic
正特征奇点的环理论不变量
  • 批准号:
    11640021
  • 财政年份:
    1999
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
F-rational Ringの研究
F有理环研究
  • 批准号:
    06640079
  • 财政年份:
    1994
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了