Singurality Theory and Frobenius Morphism
奇点理论和弗罗贝尼乌斯态射
基本信息
- 批准号:17540043
- 负责人:
- 金额:$ 2.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Frobenius endomorphism hi characteristic p > 0 is a very powerful tool in commutative ring theory as well as singularity theory or algebraic geometry iover a field of characteristic 0 via reduction mod p.We applied the Frobenius endomorphism to various problems in commutative algebra and singularity theory. Inparticular, we showed the followings ;1. F-thresholds ; F-threshold is defined in a Noetherian ring of characteristic p>0 to a pair (I,J) of two ideals of A.This notion was originally introduced to describe multiplier ideals and jumping numbers in a regular local ring. But in our research, it turned out that this notion is closely related to tight closures and integral closures and also we have a nice conjecture concerning F-threshold and multiplicity of a parameter ideal.2. Multi-graded rings, rational singularity and F-rational rings ;The notion of multi-graded rings and their diagonal algebras is a very interesting object and very useful in making many interesting examples. In a joint paper with A Singh and E. Sato, K. Kurano and K. Watanabe made a new example with discrete divisor class group whose local cohomology modules shows very interesting feature. Also we showed a criterion for diagonal subalgebras of multi-graded hypersurfaces to be f-rational or F-regular in terms of the degree.3. Totally reflexive modules ;In the theory of totally reflexive modules, examples of non-trivial totally reflexive modules are very few. Watanabe and R. Takahashi constructed a family of non-trivial totally reflexive modules using geometry of curves of genus greater than 1. This is the first case that algebraic geometry is used in this theory.
Frobenius内态性HI特征p> 0是通勤环理论以及奇异理论或代数几何的非常强大的工具。通过还原mod p.我们将frobenius内态性应用于交换性代数和奇异理论的各种问题。内部,我们显示了以下; 1。 F阈值; F-阈值在一个特征性p> 0的noetherian环上定义为两个理想的对(i,j)。该概念最初是为了描述常规本地环中的乘数理想和跳跃数字。但是在我们的研究中,事实证明,这个概念与紧密的封闭和整体封闭密切相关,并且我们对参数理想的f-阈值和多重性有一个很好的猜想。2。多级别的环,合理的概念和F理性的环;多级环及其对角线代数的概念是一个非常有趣的对象,对于制作许多有趣的例子非常有用。在与Singh和E. Sato的联合论文中,K。Kurano和K. Watanabe与离散的Divisor class组做了一个新的示例,其本地共同体学模块显示出非常有趣的功能。同样,我们还展示了多层超曲面的对角线亚代galgebras的标准,其程度是F理性的或f-groumar的标准。3。完全反身模块;在完全反身模块的理论中,非平凡的完全反身模块的示例很少。渡边和高桥河(R.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
F-thresholds-application to lc thresholds and a conjectur on multiplicity
F 阈值在 lc 阈值中的应用和多重性猜想
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:K.;Watanabe;K. Watanabe
- 通讯作者:K. Watanabe
F-thresholds and Berstein-Sato polynomials,
F 阈值和 Berstein-Sato 多项式,
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M.Mustata;S.Takagi;K.Watanabe
- 通讯作者:K.Watanabe
Formulas for multiplier ideals on singular varieties
奇异品种乘数理想公式
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Shunsuke;Takagi
- 通讯作者:Takagi
Another proof of theorems of De Cocini and Procesi,
De Cocini 和 Procesi 定理的另一个证明,
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:S.Noh;K.Watanabe;K.Kurano;S.Takagi;N.Hara;M.Hashimoto
- 通讯作者:M.Hashimoto
Some chara-cteistic p methods for singularity theory
奇点理论的一些特征方法
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:K.;Watanabe;K. Watanabe
- 通讯作者:K. Watanabe
共 14 条
- 1
- 2
- 3
WATANABE Keiichi的其他基金
A Study on the Maintaining Community Livelihoods in a Low-vegetation Environment: A Case Study of the Lake Biwa Region in the Early-modern to Modern Times.
低植被环境下维持社区生计的研究——以近代至近代琵琶湖地区为例。
- 批准号:18K0118418K01184
- 财政年份:2018
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Revealing the History of Management and Rituals of Sajo-jo Documents in Miyaza Archives: From the Viewpoint of Material Culture
揭示宫座档案馆四条上文书的管理与礼仪史:从物质文化的角度
- 批准号:15K1690715K16907
- 财政年份:2015
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for Young Scientists (B)Grant-in-Aid for Young Scientists (B)
Commutative Ring Theory of Singularities
奇点交换环理论
- 批准号:2640005326400053
- 财政年份:2014
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Reconsideration on the Public-service Nature of Japanese Railway Businesses in the Prewar Period
战前日本铁路事业公共服务性质的再思考
- 批准号:2253034822530348
- 财政年份:2010
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
A study on historical types and functions of long-term archives in "Miyaza" systems
“宫座”系统中长期档案的历史类型与功能研究
- 批准号:2172032821720328
- 财政年份:2009
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for Young Scientists (B)Grant-in-Aid for Young Scientists (B)
Economic Policy of Japanese Railway Industry in the Inter-War Period
两次世界大战期间日本铁路工业的经济政策
- 批准号:1653023116530231
- 财政年份:2004
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Structural evolution and molecular mechanism of cold-active enzymes from Antarctic psychrophiles
南极嗜冷菌冷活性酶的结构演化及分子机制
- 批准号:1538007415380074
- 财政年份:2003
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Commutative ring theory and singularity theory
交换环理论和奇点理论
- 批准号:1344001513440015
- 财政年份:2001
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
Characteristic p method in singularity theory
奇点理论中的特征p法
- 批准号:1064004210640042
- 财政年份:1998
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
MICE LACKING ALKALINE PHOSPHATASE ISOZYMES.-MOLECULAR GENETICS AND PATHOLOGICAL INVESTIGATION
缺乏碱性磷酸酶同工酶的小鼠-分子遗传学和病理学研究
- 批准号:0904433509044335
- 财政年份:1997
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for international Scientific ResearchGrant-in-Aid for international Scientific Research
相似国自然基金
音乐哲理性概念的加工及其神经机制
- 批准号:31500876
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
潜在的自尊心の概念的理解の促進と測定法の性質の検討
促进对内隐自尊的概念理解并审视测量方法的本质
- 批准号:24K0644924K06449
- 财政年份:2024
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
組織の健全性とは何か-高信頼性組織理論と心理的安全性概念からの研究
什么是组织健康?从高可靠性组织理论和心理安全观研究
- 批准号:24K0503924K05039
- 财政年份:2024
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
偶然性概念の哲学史的・概念史的研究:現代の諸課題の再文脈化の試みへ向けて
关于偶然性概念的哲学和概念历史研究:尝试重新语境化当代问题
- 批准号:23H0055923H00559
- 财政年份:2023
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
高校生物における概念理解の個人特性を反映したストーリーの活用に関する実証的研究
反映高中生物概念理解个体特征的故事使用的实证研究
- 批准号:22KJ042322KJ0423
- 财政年份:2023
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for JSPS FellowsGrant-in-Aid for JSPS Fellows
高齢者の自己複雑性と主観的well-being:自己側面間の相互作用過程の解明
老年人的自我复杂性和主观幸福感:阐明自我方面之间的相互作用过程
- 批准号:22K0303922K03039
- 财政年份:2022
- 资助金额:$ 2.47万$ 2.47万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)