Commutative ring theory and singularity theory
交换环理论和奇点理论
基本信息
- 批准号:13440015
- 负责人:
- 金额:$ 4.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The results are mainly concerning the followings 3 themes1.Multiplier ideals ;J.Lipman and K.Watanabe proved that every integrally closed ideal in 2 dimensional regular local rings is a multiplier ideal.N.Hara and K.Yoshida defined a generalization of "tight closures" in characteristic p>0 and by using that concept, they Succeeded to calculate multiplier ideals by purely algebraic (by commutative ring theory) method.S.Takagi and K.Watanabe established the notion of "F-pure thresholds", which corresponds to the notion of lc(=log canonical) threshold in characteristic 0, used in algebraic geometry. This concept has many interesting features in both singularity theory and commutative ring theory.2.Hilbert-Kunz multiplicity ;Hilbert-Kunz multiplicity is a kind of multiplicity defined for rings of positive characteristics. Watanabe and Yoshida proved before that a ring is regular if and only if the HK multiplicity of the ring is 1. This time we determined the rings whose HK multiplicity is smallest among non-regular rings in dimension 2 and 3.
结果主要是关于下面的3个主题1.多层次理想; Method.s.takagi和K.Watanabe建立了“ F-Pure阈值”的概念,该概念与代数几何形状中使用的特征性0中LC(= log canonical)阈值的概念相对应。这个概念在奇异理论和交换环理论中都具有许多有趣的特征。2.Hilbert-Kunz多样性; Hilbert-Kunz多重性是一种为积极特征的环所定义的一种多重性。渡边和吉田在且仅当环的HK多样性为1时证明了环是规则的。这次,我们确定了在尺寸2和3中非规范环中HK多样性最小的环。
项目成果
期刊论文数量(80)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Hara, K.Watanabe: "F-regular and F-pure rings vs. log terminal and log canonical singularities"J. of Algebraic Geometry. 11. 363-392 (2002)
N.Hara,K.Watanabe:“F-正则环和 F-纯环与对数终端和对数规范奇点”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A characterization of semi-quasihomogeneous functions in terms of Milnor numbers
用 Milnor 数表示半拟齐次函数的特征
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Furuya;M.Tomari
- 通讯作者:M.Tomari
When does the subadditivity theorem for multiplier ideals hold?
乘数理想的次可加性定理何时成立?
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.-i.Watanabe;S.Takagi
- 通讯作者:S.Takagi
A characterization of semi-quasihomogeneous function in terms of the Milnor number
半拟齐次函数的 Milnor 数表征
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Furuya;M.Toamri
- 通讯作者:M.Toamri
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WATANABE Keiichi其他文献
WATANABE Keiichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WATANABE Keiichi', 18)}}的其他基金
A Study on the Maintaining Community Livelihoods in a Low-vegetation Environment: A Case Study of the Lake Biwa Region in the Early-modern to Modern Times.
低植被环境下维持社区生计的研究——以近代至近代琵琶湖地区为例。
- 批准号:
18K01184 - 财政年份:2018
- 资助金额:
$ 4.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Revealing the History of Management and Rituals of Sajo-jo Documents in Miyaza Archives: From the Viewpoint of Material Culture
揭示宫座档案馆四条上文书的管理与礼仪史:从物质文化的角度
- 批准号:
15K16907 - 财政年份:2015
- 资助金额:
$ 4.54万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Commutative Ring Theory of Singularities
奇点交换环理论
- 批准号:
26400053 - 财政年份:2014
- 资助金额:
$ 4.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reconsideration on the Public-service Nature of Japanese Railway Businesses in the Prewar Period
战前日本铁路事业公共服务性质的再思考
- 批准号:
22530348 - 财政年份:2010
- 资助金额:
$ 4.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on historical types and functions of long-term archives in "Miyaza" systems
“宫座”系统中长期档案的历史类型与功能研究
- 批准号:
21720328 - 财政年份:2009
- 资助金额:
$ 4.54万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Singurality Theory and Frobenius Morphism
奇点理论和弗罗贝尼乌斯态射
- 批准号:
17540043 - 财政年份:2005
- 资助金额:
$ 4.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Economic Policy of Japanese Railway Industry in the Inter-War Period
两次世界大战期间日本铁路工业的经济政策
- 批准号:
16530231 - 财政年份:2004
- 资助金额:
$ 4.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural evolution and molecular mechanism of cold-active enzymes from Antarctic psychrophiles
南极嗜冷菌冷活性酶的结构演化及分子机制
- 批准号:
15380074 - 财政年份:2003
- 资助金额:
$ 4.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characteristic p method in singularity theory
奇点理论中的特征p法
- 批准号:
10640042 - 财政年份:1998
- 资助金额:
$ 4.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MICE LACKING ALKALINE PHOSPHATASE ISOZYMES.-MOLECULAR GENETICS AND PATHOLOGICAL INVESTIGATION
缺乏碱性磷酸酶同工酶的小鼠-分子遗传学和病理学研究
- 批准号:
09044335 - 财政年份:1997
- 资助金额:
$ 4.54万 - 项目类别:
Grant-in-Aid for international Scientific Research
相似海外基金
Characteristic p method in singularity theory
奇点理论中的特征p法
- 批准号:
20540050 - 财政年份:2008
- 资助金额:
$ 4.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the singularities of a variety
品种奇异性研究
- 批准号:
18340004 - 财政年份:2006
- 资助金额:
$ 4.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)