Commutative ring theory and singularity theory

交换环理论和奇点理论

基本信息

  • 批准号:
    13440015
  • 负责人:
  • 金额:
    $ 4.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2004
  • 项目状态:
    已结题

项目摘要

The results are mainly concerning the followings 3 themes1.Multiplier ideals ;J.Lipman and K.Watanabe proved that every integrally closed ideal in 2 dimensional regular local rings is a multiplier ideal.N.Hara and K.Yoshida defined a generalization of "tight closures" in characteristic p>0 and by using that concept, they Succeeded to calculate multiplier ideals by purely algebraic (by commutative ring theory) method.S.Takagi and K.Watanabe established the notion of "F-pure thresholds", which corresponds to the notion of lc(=log canonical) threshold in characteristic 0, used in algebraic geometry. This concept has many interesting features in both singularity theory and commutative ring theory.2.Hilbert-Kunz multiplicity ;Hilbert-Kunz multiplicity is a kind of multiplicity defined for rings of positive characteristics. Watanabe and Yoshida proved before that a ring is regular if and only if the HK multiplicity of the ring is 1. This time we determined the rings whose HK multiplicity is smallest among non-regular rings in dimension 2 and 3.
结果主要是关于下面的3个主题1.多层次理想; Method.s.takagi和K.Watanabe建立了“ F-Pure阈值”的概念,该概念与代数几何形状中使用的特征性0中LC(= log canonical)阈值的概念相对应。这个概念在奇异理论和交换环理论中都具有许多有趣的特征。2.Hilbert-Kunz多样性; Hilbert-Kunz多重性是一种为积极特征的环所定义的一种多重性。渡边和吉田在且仅当环的HK多样性为1时证明了环是规则的。这次,我们确定了在尺寸2和3中非规范环中HK多样性最小的环。

项目成果

期刊论文数量(80)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Hara, K.Watanabe: "F-regular and F-pure rings vs. log terminal and log canonical singularities"J. of Algebraic Geometry. 11. 363-392 (2002)
N.Hara,K.Watanabe:“F-正则环和 F-纯环与对数终端和对数规范奇点”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A characterization of semi-quasihomogeneous functions in terms of Milnor numbers
用 Milnor 数表示半拟齐次函数的特征
When does the subadditivity theorem for multiplier ideals hold?
乘数理想的次可加性定理何时成立?
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K.-i.Watanabe;S.Takagi
  • 通讯作者:
    S.Takagi
A characterization of semi-quasihomogeneous function in terms of the Milnor number
半拟齐次函数的 Milnor 数表征
On F-pure thresholds,
在 F 纯阈值上,
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Takagi;K.Watanabe
  • 通讯作者:
    K.Watanabe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WATANABE Keiichi其他文献

WATANABE Keiichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WATANABE Keiichi', 18)}}的其他基金

A Study on the Maintaining Community Livelihoods in a Low-vegetation Environment: A Case Study of the Lake Biwa Region in the Early-modern to Modern Times.
低植被环境下维持社区生计的研究——以近代至近代琵琶湖地区为例。
  • 批准号:
    18K01184
  • 财政年份:
    2018
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Revealing the History of Management and Rituals of Sajo-jo Documents in Miyaza Archives: From the Viewpoint of Material Culture
揭示宫座档案馆四条上文书的管理与礼仪史:从物质文化的角度
  • 批准号:
    15K16907
  • 财政年份:
    2015
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Commutative Ring Theory of Singularities
奇点交换环理论
  • 批准号:
    26400053
  • 财政年份:
    2014
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reconsideration on the Public-service Nature of Japanese Railway Businesses in the Prewar Period
战前日本铁路事业公共服务性质的再思考
  • 批准号:
    22530348
  • 财政年份:
    2010
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on historical types and functions of long-term archives in "Miyaza" systems
“宫座”系统中长期档案的历史类型与功能研究
  • 批准号:
    21720328
  • 财政年份:
    2009
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Singurality Theory and Frobenius Morphism
奇点理论和弗罗贝尼乌斯态射
  • 批准号:
    17540043
  • 财政年份:
    2005
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Economic Policy of Japanese Railway Industry in the Inter-War Period
两次世界大战期间日本铁路工业的经济政策
  • 批准号:
    16530231
  • 财政年份:
    2004
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural evolution and molecular mechanism of cold-active enzymes from Antarctic psychrophiles
南极嗜冷菌冷活性酶的结构演化及分子机制
  • 批准号:
    15380074
  • 财政年份:
    2003
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Characteristic p method in singularity theory
奇点理论中的特征p法
  • 批准号:
    10640042
  • 财政年份:
    1998
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MICE LACKING ALKALINE PHOSPHATASE ISOZYMES.-MOLECULAR GENETICS AND PATHOLOGICAL INVESTIGATION
缺乏碱性磷酸酶同工酶的小鼠-分子遗传学和病理学研究
  • 批准号:
    09044335
  • 财政年份:
    1997
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for international Scientific Research

相似海外基金

Characteristic p method in singularity theory
奇点理论中的特征p法
  • 批准号:
    20540050
  • 财政年份:
    2008
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the singularities of a variety
品种奇异性研究
  • 批准号:
    18340004
  • 财政年份:
    2006
  • 资助金额:
    $ 4.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了