ミラー対称性と多変数超幾何微分方程式系のモノドロミー
多元超几何微分方程组的镜像对称性和单调性
基本信息
- 批准号:13640009
- 负责人:
- 金额:$ 0.83万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
数学者Kontsevichは、"ホモロシー論的ミラー対称性"を提唱し、カラヒ・ヤウ多様体X.X^Vがミラー対称であるとき、X上の連接層が作る導来圏とX^V上のラグラジアン部分多様体とその上の平坦直線束から定義する、深谷のA_<(x)>圏の導来圏が同値になることを予想し、その考え方は広く受け入れられている。本研究では、ホモロジー論的ミラー対称性に関係して次の成果を得た:(1)カラヒ・ヤウ多様体は同型でないが、導来圏が同型になってしまう場合のミラー対称性について考察した。特にK3曲面の場合に、ミラー多様体の周期写像のモノドロミー性質力:導来圏の自己圏同値として表わされない例を見つけた。また、この現象は多様体は同型でないが、導来圏が同型になってしまう場合に典型的に起こる現象であることを議論した。(2)グロセフ・ヴィッテン不変量とよばれる位相不変量について、ホモロジー論的ミラー対称性に基づいた数学的定式化を与えた。これは、物理学者によって提唱されているBPS状態の数え上げ問題の数学的正当化である。以上2点に関する成果に加えて、2001年7月に、"Workshop on Arithmetic, Geometry and Physics around calab-Yau Vanettes and Mirror Symmetry"(於:トロント、カナダ)に、オーガナイザーの1人として参加し、超幾回級数に関する講演を行った。
Mathematician Kontsevich proposes "homolological mirror symmetry" and predicts that when the Karahi-Yau manifold X.X^V is mirror symmetric, the derived sphere of Fukaya's A_<(x)> sphere, defined by the concatenated layer on X and the Lagradian submanifold on X^V and the flat straight line bundle above, will be equal, and this idea is widely accepted.在这项研究中,我们获得了与同源镜子对称性有关的以下结果:(1)当Karahi-yau歧管不是同构时,我们检查了镜像对称性,但是衍生的球体变成同构。我们发现了一个示例,其中镜像歧管周期地图的单颗粒特性并未表示为衍生球的自圈等效性,尤其是在K3表面的情况下。我们还讨论了这种现象是一种现象,通常在流形不是同构时发生的现象,而当衍生的球成为同构时。 (2)给出了基于同源镜子对称性的数学公式,用于称为Grossev-witten不变性的拓扑形式。这是物理学家提出的BPS状态计数问题的数学理由。除了上述两点的结果(2001年7月),他还参加了“围绕Calab-Yau Vanettes和Mirror Symmetry围绕算术,几何学和物理学的研讨会”(在加拿大多伦多)参加的“算术,几何和物理学研讨会”,并在加拿大多伦多进行了演讲,并在串联上进行了许多次数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
細野 忍其他文献
New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008)
代数几何、可积系统和镜像对称的新发展(RIMS,京都,2008 年)
- DOI:
10.2969/aspm/05910000 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
齋藤 政彦;細野 忍;吉岡 康太 - 通讯作者:
吉岡 康太
Two Phase Problems for Viscous Fluids
粘性流体的两相问题
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
M. S. Bahramy;P. D. C. King;A. de la Torre;J. Chang;M. Shi,L. Patthey;G. Balakrishnan;Ph. Hofmann;R. Arita;N.Nagaosa;and F. Baumberger;Daisuke Oyama;細野 忍;Y. Shibata - 通讯作者:
Y. Shibata
カラビ・ヤウ多様体の幾何学とミラーシンメトリー
Calabi-Yau 流形的几何和镜像对称性
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
M. S. Bahramy;P. D. C. King;A. de la Torre;J. Chang;M. Shi,L. Patthey;G. Balakrishnan;Ph. Hofmann;R. Arita;N.Nagaosa;and F. Baumberger;Daisuke Oyama;細野 忍 - 通讯作者:
細野 忍
Fourier-Mukai partners, mirror symmetry, and BPS numbers
Fourier-Mukai 伙伴、镜像对称性和 BPS 数
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
K. Kobayashi;T. Tsuchiya;細野 忍 - 通讯作者:
細野 忍
細野 忍的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('細野 忍', 18)}}的其他基金
正則アノマリー方程式とモジュライ空間の幾何学
正则异常方程与模空间几何
- 批准号:
24K06743 - 财政年份:2024
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
カラビ・ヤウ多様体の変形空間とミラー対称性
Calabi-Yau流形的变形空间和镜像对称性
- 批准号:
20K03593 - 财政年份:2020
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
弦理論の双対性とモジュライ空間の幾何学
弦理论的对偶性和模空间几何
- 批准号:
11740006 - 财政年份:1999
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
超弦理論とCalabi-Yau多様体の退化
弦理论和 Calabi-Yau 流形的简并性
- 批准号:
09740015 - 财政年份:1997
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
Calabi-Yau多様体におけるmirror対称性の研究
Calabi-Yau流形镜像对称性的研究
- 批准号:
08211218 - 财政年份:1996
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Calabi-Yau多様体におけるmirror対称性の研究
Calabi-Yau流形镜像对称性的研究
- 批准号:
07210233 - 财政年份:1995
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Calabi-Yau多様体のmirror対称性の研究
Calabi-Yau流形镜像对称性的研究
- 批准号:
06221230 - 财政年份:1994
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
場の量子論及び量子論の位相幾何学的研究
量子场论和量子理论的拓扑研究
- 批准号:
01790194 - 财政年份:1989
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (Research Fellowship)
相似海外基金
代数幾何と可積分系の融合 - 種々のモジュライ空間と数学・数理物理学の新展開 -
代数几何与可积系统的融合 - 各种模空间以及数学和数学物理的新发展 -
- 批准号:
17H01087 - 财政年份:2017
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Algebraic geometry and Integrable systems - Deepning of Theory and New Developments in Mathematics and Mathematical Physics -
代数几何与可积系统 - 数学与数学物理理论的深化与新进展 -
- 批准号:
17H06127 - 财政年份:2017
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Degenerations of Calabi-Yau manifolds and mirror symmetry
Calabi-Yau 流形的简并和镜像对称性
- 批准号:
16K05105 - 财政年份:2016
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli spaces of connections and Higgs bundles and Spectral curves
连接模空间、希格斯丛和谱曲线
- 批准号:
15K13427 - 财政年份:2015
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Developments in Interactions between Algebraic Geometry and Integrable Systems
代数几何与可积系统相互作用的进展
- 批准号:
24224001 - 财政年份:2012
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (S)