Structure of the Solutions to Partial Differential Equations Degenerating on the Initial Surface, and its Applications

初表面上退化的偏微分方程解的结构及其应用

基本信息

  • 批准号:
    12640194
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

The indicial polynomial and its zeros called characteristic exponents play an important role in the study of Fuchsian partial differential equations in the sense of Baouendi-Goulaouic, that is, linear partial differential equations with regular singularity along the initial surface. We had succeeded to construct a solution map which gives the local structure of the solutions to homogeneous single Fuchsian partial differential equations and first order Fuchsian systems in a complex domain, without any assumption on the indicial polynomial.In this research, we constructed a solution map for Fuchsian systems of Volevic type (not necessarily first order). We need to consider the systems without reducing them to first order systems, since such a reduction involves singular transformations.We also considered partial differential equations with several Fuchsian variables. We constructed distribution null-solutions for such equations in the real domain. The situation is far more complicated than that for equations with a single Fuchsian variable, for which we had already constructed distribution null-solutions.
在Baouendi-goulaouic的意义上,指示性多项式及其称为特征指数的零在研究紫色部分微分方程的研究中起着重要作用,即,线性部分微分方程在初始表面具有正常的奇异性。我们成功地构建了一个解决方案图,该图为均质的单个紫色偏微分方程和一阶在复杂域中的fuchsian系统提供了解决方案的局部结构,而无需对指示多项式进行任何假设。在这项研究中,我们构建了一个解决方案图。对于Volevic类型的Fuchsian系统(不一定是一阶)。我们需要考虑这些系统而不将它们减少为一阶系统,因为这样的减少涉及奇异转换。我们还认为具有几个Fuchsian变量的偏微分方程。我们在真实域中为此类方程构建了分布空分。这种情况要比单个Fuchsian变量的方程式要复杂得多,我们已经为此构建了分布空分。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T. Hara and S. Sakata: "Dynamics of a delay differential system with periodically oscillatory coefficients"Nonlinear Analysis. 47. 4399-4408 (2001)
T. Hara 和 S. Sakata:“具有周期性振荡系数的延迟微分系统的动力学”非线性分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Lope, J.E.C., Tahara, H.: "On the analytic continuation of solutions to nonlinear partial differential equations"J. Math. Pures Appl.. 81. 811-826 (2002)
Lope, J.E.C., Tahara, H.:“关于非线性偏微分方程解的解析延拓”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Chen, Z. Luo and H. Tahara: "Formal solutions of nonlinear first order totally characteristic type PDE with irregular singularity"Ann. Inst. Fourier, Grenoble. 51. 1599-1620 (2001)
H. Chen、Z. Luo 和 H. Tahara:“具有不规则奇点的非线性一阶全特征型偏微分方程的形式解”Ann。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mandai,T.: "The Method of Frobenius to Fuchsian Partial Differential Equations "J.Math.Soc.Japan. 52:3. 645-672 (2000)
Mandai,T.:“Frobenius 求解 Fuchsian 偏微分方程的方法”J.Math.Soc.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MANDAI Takeshi其他文献

MANDAI Takeshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MANDAI Takeshi', 18)}}的其他基金

Degenerate Partial Differential Equations, Wavelet Transform, and their Applications
简并偏微分方程、小波变换及其应用
  • 批准号:
    20540193
  • 财政年份:
    2008
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of Solutions to partial differential equations degenerating on several hypersurfaces
多个超曲面上退化的偏微分方程解的结构
  • 批准号:
    15540188
  • 财政年份:
    2003
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of the Solutions to Partial Differential Equations Degenerating on the Initial Surface
初表面上退化的偏微分方程解的结构
  • 批准号:
    10640157
  • 财政年份:
    1998
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Fine-Scale Singularity Detection in Multi-Dimensional Imaging with Regular, Orientable, Symmetric, Frame Atoms with Small Support
具有规则、可定向、对称、小支撑的框架原子的多维成像中的精细奇异性检测
  • 批准号:
    1720487
  • 财政年份:
    2017
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
The spaces of regular maps and the applications of real singularity theory to homotopy theory
正则映射空间及实奇点理论在同伦理论中的应用
  • 批准号:
    23540079
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singurality Theory and Frobenius Morphism
奇点理论和弗罗贝尼乌斯态射
  • 批准号:
    17540043
  • 财政年份:
    2005
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research for multiplicities and tight closures on singular points of positive characteristic
正特征奇异点的重数和紧闭性研究
  • 批准号:
    16540021
  • 财政年份:
    2004
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on algorithms for D-modules
D模块算法研究
  • 批准号:
    16540172
  • 财政年份:
    2004
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了