Structure of the Solutions to Partial Differential Equations Degenerating on the Initial Surface

初表面上退化的偏微分方程解的结构

基本信息

项目摘要

The Indicial polynomial and its zero called characteristic exponent play an important role in the study of Fuchsian partial differential equations in the sense of Baouendi-Goulaouic, that is, linear partial differential equations with regular singularity along the initial surface. Some conditions on the indicial polynomial have been assumed in most of the results. Mainly, we aimed to consider Fuchsian equations without any assumptions on the indicial polynomial. The main results are the following.First, we could construct a solution map which gives the local structure the solutions to homogeneous single Fuchsian partial differential equations in a complex domain. We also had a similar result for Fuchsian systems of homogeneous equations.We could also construct a solution to inhomogeneous Fuchsian equations, which is 'near' to a holomorphic solution.Our idea seems to be applicable to wider range of problems, and we have already some results of extensions.
在Baouendi-goulaouic的意义上,指示性多项式及其零称为特征指数在研究紫色部分微分方程的研究中起着重要作用,即,线性偏微分方程在初始表面具有正常的奇异性。在大多数结果中都假定了指示性多项式的某些条件。主要是,我们旨在考虑fuchsian方程,而无需对指示多项式的任何假设。主要结果是以下结果。首先,我们可以构建一个解决方案映射,该映射为局部结构提供了复杂域中均匀的单一偏射偏微分方程的解决方案。我们对均匀方程式的Fuchsian系统也有类似的结果。我们还可以构建解决方案的解决方案,该方程与Holomorthic solution“接近”。我们的想法似乎适用于更广泛的问题,我们已经适用扩展的一些结果。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takeshi MANDAI: "The Method of Frobenius to Fuchsian Partial Differentcal Eguations"Journal of Mathematical Society of Japan. (to appear).
Takeshi MANDAI:“Frobenius 的 Fuchsian 偏微分方程的方法”日本数学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takeshi MANDAI: "The Method of Frobenius to Fuchsian Partial Differential Equations"J. Math. Soc. Japan. (to appear).
Takeshi MANDAI:“Frobenius 求解 Fuchs 偏微分方程的方法”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takeshi MANDAI: "The Method of Frobenius to Fuchsian Partial Differential Equations"Journal of Math.Soc.Japan. (to appear).
Takeshi MANDAI:“Frobenius 求解 Fuchsian 偏微分方程的方法”Journal of Math.Soc.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MANDAI Takeshi其他文献

MANDAI Takeshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MANDAI Takeshi', 18)}}的其他基金

Degenerate Partial Differential Equations, Wavelet Transform, and their Applications
简并偏微分方程、小波变换及其应用
  • 批准号:
    20540193
  • 财政年份:
    2008
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of Solutions to partial differential equations degenerating on several hypersurfaces
多个超曲面上退化的偏微分方程解的结构
  • 批准号:
    15540188
  • 财政年份:
    2003
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of the Solutions to Partial Differential Equations Degenerating on the Initial Surface, and its Applications
初表面上退化的偏微分方程解的结构及其应用
  • 批准号:
    12640194
  • 财政年份:
    2000
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Fine-Scale Singularity Detection in Multi-Dimensional Imaging with Regular, Orientable, Symmetric, Frame Atoms with Small Support
具有规则、可定向、对称、小支撑的框架原子的多维成像中的精细奇异性检测
  • 批准号:
    1720487
  • 财政年份:
    2017
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
The spaces of regular maps and the applications of real singularity theory to homotopy theory
正则映射空间及实奇点理论在同伦理论中的应用
  • 批准号:
    23540079
  • 财政年份:
    2011
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singurality Theory and Frobenius Morphism
奇点理论和弗罗贝尼乌斯态射
  • 批准号:
    17540043
  • 财政年份:
    2005
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research for multiplicities and tight closures on singular points of positive characteristic
正特征奇异点的重数和紧闭性研究
  • 批准号:
    16540021
  • 财政年份:
    2004
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on algorithms for D-modules
D模块算法研究
  • 批准号:
    16540172
  • 财政年份:
    2004
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了